📄 bft_user_guide.tex.bak
字号:
\documentclass[11pt]{report}%%tth:\begin{html}<title>Beamformation Toolbox</title>\end{html}% version 1.0, 29/2-1999, SN% Set TeX to use only Post Script fonts for both the% text and the equations\usepackage{times}\usepackage{mathptm}\usepackage{longtable}\usepackage[pdftex]{graphics} % For including links in a pdf document.\usepackage{geometry}\usepackage[colorlinks, linkcolor = BrickRed]{hyperref}%\usepackage{epsfig}% Set the text height and width\textwidth 16cm\textheight 24cm\oddsidemargin 0cm\evensidemargin 0cm\topmargin -1cm% Set the indentation for each new paragraph\setlength{\parindent}{0ex}\setlength{\parskip}{2ex} % Define a macro for making headers for each procedure description\def\thesubsection{\huge }\def\boldindex#1{\textbf{\hyperpage{#1}}}\newcommand{\funlnk}[1]{ \label{#1} \hypertarget{#1}{}}\newcommand{\headline}[1]{% \clearpage \subsection[#1]{}
\setlength{\unitlength}{1cm} \begin{center} \begin{picture}(15.9,1.7) \thicklines \put(0,0){\framebox(15.9,1.3)} \put(0,0){\makebox(15.9,1.3)[l]{\Large\em \hspace{0.2 cm} BFT user's guide}} \put(0,0){\makebox(15.9,1.3)[r]{\Large\bf #1 \hspace{0.2cm}}} \end{picture} \end{center} % \vspace{0.2cm}}% Create some useful macros% Insert a figure, where the size is determined in the text\newcommand{\insertfigure}[2]{ \setlength{\epsfxsize}{#2} \begin{center} \mbox{\epsfbox{#1}} \end{center} \vspace*{-0.5cm}% \begin{center}% \epsfig{file=#1, height=#2}% \end{center}}\title{Users' guide for the \\Beamformation Toolbox}\author{Svetoslav Ivanov Nikolov \\Department of Information Technology, Build. 344, \\Technical University of Denmark \\DK-2800 Lyngby, Denmark}\begin{document} % End of preamble and beginning of text.\definecolor{BrickRed}{rgb}{0.5 , 0 , .3}\input epsf \maketitle % Produces the title.\pdfbookmark{Contents}{content}%%%tth:\tableofcontents%%tth:\begin{html}<hr>\end{html}%%tth:Chapter 1.\\ ~~~\hyperlink{chap_intro}{Introduction} \\%%tth:Chapter 2.\\ ~~~\hyperlink{chap_func_desc}{Description of Matlab functions} \\%%tth:Chapter 3.\\ ~~~\hyperlink{chap_func_desc}{Description of Matlab functions} \\%%tth:Chapter 4.\\ ~~~\hyperlink{chap_examples}{Examples}\\%%tth:\begin{html}<hr>\end{html}%%tth:\begin{html}<hr>\end{html}\chapter{Introduction}\label{chap_intro}%%tth:\begin{html}<hr>\end{html} This is the user guide to the Beamformation Toolbox. This toolbox isavailable only for Matlab under Linux, and is intended for processing raw RF data recorded by an ultrasound system. Typical applications includesynthetic aperture focusing and beamformation of data recorded by experimental systems such as XTRA or the \emph{Experimental Ultrasound System for Real Time Synthetic Aperture Focusing}. All the functions have calling conventions just like {\bf \href{http://www.it.dtu.dk/~jaj/field}{Field-II}}.In the future the toolbox will try support many different types of strange and wacky algorithms, so - stay tuned. \vspace{1cm}Svetoslav Ivanov Nikolov \\February 29, 2000.%%tth:\begin{html}<hr>\end{html}\chapter{Description of Matlab Functions}\label{chap_func_desc}%%tth:\begin{html}<hr>\end{html}\section{Functions list}\begin{tabular}[t]{lp{14cm}} \hyperlink{bft_add_image}{bft\_add\_image} & Add a low resolution to hi resolution image.\\ \hyperlink{bft_apodization}{bft\_apodization} & Create a apodization time line. \\ \hyperlink{bft_beamform}{bft\_beamform} & Beamform a number of scan-lines. \\ \hyperlink{bft_center_focus}{bft\_center\_focus} & Set the center focus point for the focusing. \\ \hyperlink{bft_dynamic_focus}{bft\_dynamic\_focus} & Set dynamic focusing for a line. \\ \hyperlink{bft_end}{bft\_end} & Release all resources, allocated by the beamforming toolbox.\\ \hyperlink{bft_focus}{bft\_focus} & Create a focus time line defined by focus points.\\ \hyperlink{bft_focus_times}{bft\_focus\_times} & Create a focus time line defined by focus delays.\\ \hyperlink{bft_free_xdc}{bft\_free\_xdc} & Free the memory allocated for a transducer definition.\\ \hyperlink{bft_init}{bft\_init} & Initialize the BeamForming Toolbox.\\ \hyperlink{bft_linear_array}{bft\_linear\_array} & Create a linear array.\\ \hyperlink{bft_no_lines}{bft\_no\_lines} & Set the number of lines that will be beamformed in parallel.\\ \hyperlink{bft_param}{bft\_param} & Set a paramater of the BeamForming Toolbox.\\ \hyperlink{bft_sub_image}{bft\_sub\_image} & Subtract one low-res image from high-res one.\\ \hyperlink{bft_sum_apodization}{bft\_sum\_apodization} & Create a summation apodization time line.\\ \hyperlink{bft_sum_images}{bft\_sum\_images} & Sum 2 low resolution images in 1 high resolution.\\ \hyperlink{bft_transducer}{bft\_transducer} & Create a new transducer definition.\\\end{tabular}\newpage\section{Function description}\headline{bft\_add\_image}%%tth:\vspace{1cm}%%tth:\begin{html}<hr>\end{html}%%tth:\subsection*{bft\_add\_image}%%tth:\begin{html}<hr>\end{html}\funlnk{bft_add_image}Add a low resolution to hi resolution image. \begin{tabular}[t]{lp{14cm}} USAGE: & {\verb [hi_res]=bft_add_image(hi_res,lo_res,element,start_time) }\\INPUT: & \begin{tabular}[t]{lp{11cm}} {\sl hi\_res} & High resolutio RF image. One column per scan line. \\ {\sl lo\_res} & Low resolution RF image. One column per scan line. \\ {\sl element} & Number of element, used to acquire the low resolution image. \\ {\sl time} & Arrival time of the first sample of the RF lines. [sec]\\ \end{tabular}\\ OUTPUT:& hi\_res - The high resolution image\end{tabular}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\headline{bft\_appodization}%%tth:\vspace{2cm}%%tth:\begin{html}<hr>\end{html}%%tth:\subsection*{bft\_appodization}%%tth:\begin{html}<hr>\end{html}\funlnk{bft_apodization}Create an apodization time line.\begin{tabular}[t]{lp{14cm}} USAGE: & {\tt bft\_apodization(xdc, times, values, line\_no)} \\ INPUT: & \begin{tabular}[t]{lp{11cm}} {\sl xdc} & Pointer to a transducer aperture \\ {\sl times} & Timea after which the associated apodization is valid \\ {\sl values} & Apodization values. Matrix with one row for each time value and a number of columns equal to the number of physical elements in the aperture. \\ {\sl line\_no} & Number of line. If skipped, {\sl line\_no} is assumed to be equal to '1'. \end{tabular} \\ OUTPUT: & None\end{tabular}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\headline{bft\_beamform}%%tth:\vspace{2cm}%%tth:\begin{html}<hr>\end{html}%%tth:\subsection*{bft\_beamform}%%tth:\begin{html}<hr>\end{html}\funlnk{bft_beamform}Beamform a number of scan-lines. The number of the simultaneously beamformedscan-lines is set by \hyperlink{bft_no_lines}{\tt bft\_no\_lines}. If \hyperlink{bft_no_lines}{\tt bft\_no\_lines} is not called, only one scanline will be beamformed.\begin{tabular}[t]{lp{14cm}} USAGE: & {\tt bf\_lines = bft\_beamform(time, rf\_data)} \\ INPUT: & \begin{tabular}[t]{lp{11cm}} {\sl time} & The time of the first sampled value \\ {\sl rf\_data} & The recorded RF data. The number of columns is equal to the number of elements. \end{tabular}\\ OUTPUT: & {\sl bf\_lines} Matrix with the beamformed data. The number of rows of {\sl bf\_lines} is equal to the number of rows of {\sl rf\_data}. The number of columns is equal to the number of lines \\ \end{tabular}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\headline{bft\_center\_focus}%%tth:\vspace{2cm}%%tth:\begin{html}<hr>\end{html}%%tth:\subsection*{bft\_center\_focus}%%tth:\begin{html}<hr>\end{html}\funlnk{bft_center_focus} Set the center focus point for the focusing. This point is used as a reference for calculating the focusing delay times and as a starting point for dynamic focusing.\begin{tabular}[t]{lp{14cm}} USAGE: & {\tt bft\_center\_focus(point, line\_no)} \\ INPUT: & \begin{tabular}[t]{lp{11cm}} {\sl point} & The center point [x,y,z] [ m ]\\ {\sl line\_no} & Number of line. If omitted in the parameter list {\sl line\_no} is assumed equal to 1\\ \end{tabular}\\ OUTPUT: & None\end{tabular}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\headline{bft\_dynamic\_focus}%%tth:\vspace{2cm}%%tth:\begin{html}<hr>\end{html}%%tth:\subsection*{bft\_dynamic\_focus}%%tth:\begin{html}<hr>\end{html}\funlnk{bft_dynamic_focus}Set dynamic focusing for a line\begin{tabular}[t]{lp{14cm}} USAGE: & {\tt bft\_dynamic\_focus(xdc, dir\_xz, dir\_zy, line\_no)} \\ INPUT: & \begin{tabular}[t]{lp{11cm}} {\sl xdc} & Pointer to the transducer aperture\\ {\sl dir\_zx} & Direction (angle) in radians for the dynamic focus. The direction is taken from the center for the focus of the transducer in the z-x plane.\\ {\sl dir\_zy} & Direction (angle) in radians for the dynamic focus. The direction is taken from the center for the focus of the transducer in the z-y plane.\\ {\sl line\_no} & Number of line. If skipped, {\sl line\_no} is assumed to be equal to '1'. \end{tabular} \\ OUTPUT: & None \end{tabular} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%55\headline{bft\_end}%%tth:\vspace{2cm}%%tth:\begin{html}<hr>\end{html}%%tth:\subsection*{bft\_end}%%tth:\begin{html}<hr>\end{html}\funlnk{bft_end}Release all resources allocated by the beamforming toolbox.\begin{tabular}[t]{lp{14cm}} USAGE:& {\tt bft\_end}\\ INPUT:& None\\ OUTPUT:& None\\\end{tabular}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\headline{bft\_focus}%%tth:\vspace{2cm}%%tth:\begin{html}<hr>\end{html}%%tth:\subsection*{bft\_focus}%%tth:\begin{html}<hr>\end{html}\funlnk{bft_focus}Create a focus time line.\begin{tabular}[t]{lp{14cm}} USAGE: & {\tt bft\_focus(xdc, times, points, line\_no)}\\ INPUT:& \begin{tabular}[t]{lp{11cm}} {\sl xdc} & Pointer to aperture.\\ {\sl times} & Time after which the associated focus is valid \\ {\sl points} & Focus points. Vector with three columns (x,y,z) and one row for each field point. \\ {\sl line\_no} & Number of line for which we set the focus. If skipped, {\sl line\_no} is assumed equal to '1'.\\ \end{tabular} \\ OUTPUT: & none\end{tabular}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\headline{bft\_focus\_times}%%tth:\vspace{2cm}%%tth:\begin{html}<hr>\end{html}%%tth:\subsection*{bft\_focus\_times}%%tth:\begin{html}<hr>\end{html}\funlnk{bft_focus_times} Create a focus time line. The user supplies the delay times for each element.\begin{tabular}[t]{lp{14cm}} USAGE:& {\tt bft\_focus\_times(xdc, times, delays, line\_no)}\\ INPUT:& \begin{tabular}[t]{lp{11cm}} {\sl xdc} & Pointer to a transducer aperture. \\ {\sl times} & Time after which the associated delay is valid. \\ {\sl delays} & Delay values. Matrix with one row for each time value and a number of columns equal to the number of physical elements in the aperture. \\ {\sl line\_no} & Number of line. If skipped, {\sl line\_no} is assumed to be equal to 1. \end{tabular}\\ OUTPUT: & None\end{tabular} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\headline{bft\_free\_xdc}%%tth:\vspace{2cm}%%tth:\begin{html}<hr>\end{html}%%tth:\subsection*{bft\_free\_xdc}%%tth:\begin{html}<hr>\end{html}\funlnk{bft_free_xdc}Free the memory allocated for a transducer definition\begin{tabular}[t]{lp{14cm}} USAGE:& {\tt bft\_free\_xdc(xdc)}\\ INPUT:& {\sl xdc} Pointer to the memory location returned by the function \hyperlink{bft_transducer}{bft\_transducer}\\ OUTPUT:& Nothing\end{tabular}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5\headline{bft\_init}%%tth:\vspace{2cm}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -