⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 q1bv_4.c

📁 用于DFT计算的c语言的库的最新版本,包含丰富的函数库.
💻 C
字号:
/* * Copyright (c) 2003, 2007-8 Matteo Frigo * Copyright (c) 2003, 2007-8 Massachusetts Institute of Technology * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA * *//* This file was automatically generated --- DO NOT EDIT *//* Generated on Mon Feb  9 19:53:30 EST 2009 */#include "codelet-dft.h"#ifdef HAVE_FMA/* Generated by: ../../../genfft/gen_twidsq_c -fma -reorder-insns -schedule-for-pipeline -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1bv_4 -include q1b.h -sign 1 *//* * This function contains 44 FP additions, 32 FP multiplications, * (or, 36 additions, 24 multiplications, 8 fused multiply/add), * 38 stack variables, 0 constants, and 32 memory accesses */#include "q1b.h"static void q1bv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms){     INT m;     R *x;     x = ii;     for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(vs)) {	  V Tb, Tm, Tx, TI;	  {	       V Tc, T9, T3, TG, TA, TH, TD, Ta, T6, Td, Tn, To, Tq, Tr, Tf;	       V Tg;	       {		    V T1, T2, Ty, Tz, TB, TC, T4, T5;		    T1 = LD(&(x[0]), ms, &(x[0]));		    T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));		    Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));		    Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));		    TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));		    TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));		    T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));		    T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));		    Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));		    T9 = VADD(T1, T2);		    T3 = VSUB(T1, T2);		    TG = VADD(Ty, Tz);		    TA = VSUB(Ty, Tz);		    TH = VADD(TB, TC);		    TD = VSUB(TB, TC);		    Ta = VADD(T4, T5);		    T6 = VSUB(T4, T5);		    Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));		    Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));		    To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));		    Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));		    Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));		    Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));		    Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));	       }	       {		    V Tk, Te, Tv, Tp, Tw, Ts, Tl, Th, T7, TE, Tu, TF;		    ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));		    Tk = VADD(Tc, Td);		    Te = VSUB(Tc, Td);		    Tv = VADD(Tn, To);		    Tp = VSUB(Tn, To);		    Tw = VADD(Tq, Tr);		    Ts = VSUB(Tq, Tr);		    Tl = VADD(Tf, Tg);		    Th = VSUB(Tf, Tg);		    ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));		    T7 = BYTW(&(W[TWVL * 4]), VFNMSI(T6, T3));		    TE = BYTW(&(W[TWVL * 4]), VFNMSI(TD, TA));		    {			 V Tt, Ti, Tj, T8;			 T8 = BYTW(&(W[0]), VFMAI(T6, T3));			 ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));			 Tt = BYTW(&(W[TWVL * 4]), VFNMSI(Ts, Tp));			 ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));			 Ti = BYTW(&(W[TWVL * 4]), VFNMSI(Th, Te));			 Tj = BYTW(&(W[0]), VFMAI(Th, Te));			 ST(&(x[WS(vs, 3)]), T7, ms, &(x[WS(vs, 3)]));			 ST(&(x[WS(vs, 3) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));			 ST(&(x[WS(vs, 1)]), T8, ms, &(x[WS(vs, 1)]));			 Tu = BYTW(&(W[0]), VFMAI(Ts, Tp));			 ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 3)]));			 TF = BYTW(&(W[0]), VFMAI(TD, TA));			 ST(&(x[WS(vs, 3) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 3) + WS(rs, 1)]));			 ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 1) + WS(rs, 1)]));		    }		    Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta));		    Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl));		    Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw));		    ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 1)]));		    TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH));		    ST(&(x[WS(vs, 1) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 1) + WS(rs, 1)]));	       }	  }	  ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));	  ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));	  ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));	  ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));     }}static const tw_instr twinstr[] = {     VTW(0, 1),     VTW(0, 2),     VTW(0, 3),     {TW_NEXT, VL, 0}};static const ct_desc desc = { 4, "q1bv_4", twinstr, &GENUS, {36, 24, 8, 0}, 0, 0, 0 };void X(codelet_q1bv_4) (planner *p) {     X(kdft_difsq_register) (p, q1bv_4, &desc);}#else				/* HAVE_FMA *//* Generated by: ../../../genfft/gen_twidsq_c -simd -compact -variables 4 -pipeline-latency 8 -n 4 -dif -name q1bv_4 -include q1b.h -sign 1 *//* * This function contains 44 FP additions, 24 FP multiplications, * (or, 44 additions, 24 multiplications, 0 fused multiply/add), * 22 stack variables, 0 constants, and 32 memory accesses */#include "q1b.h"static void q1bv_4(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms){     INT m;     R *x;     x = ii;     for (m = mb, W = W + (mb * ((TWVL / VL) * 6)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 6), MAKE_VOLATILE_STRIDE(rs), MAKE_VOLATILE_STRIDE(vs)) {	  V T3, T9, TA, TG, TD, TH, T6, Ta, Te, Tk, Tp, Tv, Ts, Tw, Th;	  V Tl;	  {	       V T1, T2, Ty, Tz;	       T1 = LD(&(x[0]), ms, &(x[0]));	       T2 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));	       T3 = VSUB(T1, T2);	       T9 = VADD(T1, T2);	       Ty = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));	       Tz = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));	       TA = VSUB(Ty, Tz);	       TG = VADD(Ty, Tz);	  }	  {	       V TB, TC, T4, T5;	       TB = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));	       TC = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));	       TD = VBYI(VSUB(TB, TC));	       TH = VADD(TB, TC);	       T4 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));	       T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));	       T6 = VBYI(VSUB(T4, T5));	       Ta = VADD(T4, T5);	  }	  {	       V Tc, Td, Tn, To;	       Tc = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));	       Td = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));	       Te = VSUB(Tc, Td);	       Tk = VADD(Tc, Td);	       Tn = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));	       To = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));	       Tp = VSUB(Tn, To);	       Tv = VADD(Tn, To);	  }	  {	       V Tq, Tr, Tf, Tg;	       Tq = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));	       Tr = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));	       Ts = VBYI(VSUB(Tq, Tr));	       Tw = VADD(Tq, Tr);	       Tf = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));	       Tg = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));	       Th = VBYI(VSUB(Tf, Tg));	       Tl = VADD(Tf, Tg);	  }	  ST(&(x[0]), VADD(T9, Ta), ms, &(x[0]));	  ST(&(x[WS(rs, 1)]), VADD(Tk, Tl), ms, &(x[WS(rs, 1)]));	  ST(&(x[WS(rs, 2)]), VADD(Tv, Tw), ms, &(x[0]));	  ST(&(x[WS(rs, 3)]), VADD(TG, TH), ms, &(x[WS(rs, 1)]));	  {	       V T7, Ti, Tt, TE;	       T7 = BYTW(&(W[TWVL * 4]), VSUB(T3, T6));	       ST(&(x[WS(vs, 3)]), T7, ms, &(x[WS(vs, 3)]));	       Ti = BYTW(&(W[TWVL * 4]), VSUB(Te, Th));	       ST(&(x[WS(vs, 3) + WS(rs, 1)]), Ti, ms, &(x[WS(vs, 3) + WS(rs, 1)]));	       Tt = BYTW(&(W[TWVL * 4]), VSUB(Tp, Ts));	       ST(&(x[WS(vs, 3) + WS(rs, 2)]), Tt, ms, &(x[WS(vs, 3)]));	       TE = BYTW(&(W[TWVL * 4]), VSUB(TA, TD));	       ST(&(x[WS(vs, 3) + WS(rs, 3)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));	  }	  {	       V T8, Tj, Tu, TF;	       T8 = BYTW(&(W[0]), VADD(T3, T6));	       ST(&(x[WS(vs, 1)]), T8, ms, &(x[WS(vs, 1)]));	       Tj = BYTW(&(W[0]), VADD(Te, Th));	       ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tj, ms, &(x[WS(vs, 1) + WS(rs, 1)]));	       Tu = BYTW(&(W[0]), VADD(Tp, Ts));	       ST(&(x[WS(vs, 1) + WS(rs, 2)]), Tu, ms, &(x[WS(vs, 1)]));	       TF = BYTW(&(W[0]), VADD(TA, TD));	       ST(&(x[WS(vs, 1) + WS(rs, 3)]), TF, ms, &(x[WS(vs, 1) + WS(rs, 1)]));	  }	  {	       V Tb, Tm, Tx, TI;	       Tb = BYTW(&(W[TWVL * 2]), VSUB(T9, Ta));	       ST(&(x[WS(vs, 2)]), Tb, ms, &(x[WS(vs, 2)]));	       Tm = BYTW(&(W[TWVL * 2]), VSUB(Tk, Tl));	       ST(&(x[WS(vs, 2) + WS(rs, 1)]), Tm, ms, &(x[WS(vs, 2) + WS(rs, 1)]));	       Tx = BYTW(&(W[TWVL * 2]), VSUB(Tv, Tw));	       ST(&(x[WS(vs, 2) + WS(rs, 2)]), Tx, ms, &(x[WS(vs, 2)]));	       TI = BYTW(&(W[TWVL * 2]), VSUB(TG, TH));	       ST(&(x[WS(vs, 2) + WS(rs, 3)]), TI, ms, &(x[WS(vs, 2) + WS(rs, 1)]));	  }     }}static const tw_instr twinstr[] = {     VTW(0, 1),     VTW(0, 2),     VTW(0, 3),     {TW_NEXT, VL, 0}};static const ct_desc desc = { 4, "q1bv_4", twinstr, &GENUS, {44, 24, 0, 0}, 0, 0, 0 };void X(codelet_q1bv_4) (planner *p) {     X(kdft_difsq_register) (p, q1bv_4, &desc);}#endif				/* HAVE_FMA */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -