📄 veclib.c
字号:
/* 2d and 3d Vector C Library by Andrew Glassnerfrom "Graphics Gems", Academic Press, 1990*/#include <math.h>#include "GGems.h"/******************//* 2d Library *//******************//* returns squared length of input vector */ double V2SquaredLength(a) Vector2 *a;{ return((a->x * a->x)+(a->y * a->y)); } /* returns length of input vector */double V2Length(a) Vector2 *a;{ return(sqrt(V2SquaredLength(a))); } /* negates the input vector and returns it */Vector2 *V2Negate(v) Vector2 *v;{ v->x = -v->x; v->y = -v->y; return(v); }/* normalizes the input vector and returns it */Vector2 *V2Normalize(v) Vector2 *v;{double len = V2Length(v); if (len != 0.0) { v->x /= len; v->y /= len; } return(v); }/* scales the input vector to the new length and returns it */Vector2 *V2Scale(v, newlen) Vector2 *v;double newlen;{double len = V2Length(v); if (len != 0.0) { v->x *= newlen/len; v->y *= newlen/len; } return(v); }/* return vector sum c = a+b */Vector2 *V2Add(a, b, c)Vector2 *a, *b, *c;{ c->x = a->x+b->x; c->y = a->y+b->y; return(c); } /* return vector difference c = a-b */Vector2 *V2Sub(a, b, c)Vector2 *a, *b, *c;{ c->x = a->x-b->x; c->y = a->y-b->y; return(c); }/* return the dot product of vectors a and b */double V2Dot(a, b) Vector2 *a, *b; { return((a->x*b->x)+(a->y*b->y)); }/* linearly interpolate between vectors by an amount alpha *//* and return the resulting vector. *//* When alpha=0, result=lo. When alpha=1, result=hi. */Vector2 *V2Lerp(lo, hi, alpha, result) Vector2 *lo, *hi, *result; double alpha;{ result->x = LERP(alpha, lo->x, hi->x); result->y = LERP(alpha, lo->y, hi->y); return(result); }/* make a linear combination of two vectors and return the result. *//* result = (a * ascl) + (b * bscl) */Vector2 *V2Combine (a, b, result, ascl, bscl) Vector2 *a, *b, *result;double ascl, bscl;{ result->x = (ascl * a->x) + (bscl * b->x); result->y = (ascl * a->y) + (bscl * b->y); return(result); }/* multiply two vectors together component-wise */Vector2 *V2Mul (a, b, result) Vector2 *a, *b, *result;{ result->x = a->x * b->x; result->y = a->y * b->y; return(result); }/* return the distance between two points */double V2DistanceBetween2Points(a, b)Point2 *a, *b;{double dx = a->x - b->x;double dy = a->y - b->y; return(sqrt((dx*dx)+(dy*dy))); }/* return the vector perpendicular to the input vector a */Vector2 *V2MakePerpendicular(a, ap)Vector2 *a, *ap;{ ap->x = -a->y; ap->y = a->x; return(ap); }/* create, initialize, and return a new vector */Vector2 *V2New(x, y)double x, y;{Vector2 *v = NEWTYPE(Vector2); v->x = x; v->y = y; return(v); } /* create, initialize, and return a duplicate vector */Vector2 *V2Duplicate(a)Vector2 *a;{Vector2 *v = NEWTYPE(Vector2); v->x = a->x; v->y = a->y; return(v); } /* multiply a point by a projective matrix and return the transformed point */Point2 *V2MulPointByProjMatrix(pin, m, pout)Point2 *pin, *pout;Matrix3 *m;{double w; pout->x = (pin->x * m->element[0][0]) + (pin->y * m->element[1][0]) + m->element[2][0]; pout->y = (pin->x * m->element[0][1]) + (pin->y * m->element[1][1]) + m->element[2][1]; w = (pin->x * m->element[0][2]) + (pin->y * m->element[1][2]) + m->element[2][2]; if (w != 0.0) { pout->x /= w; pout->y /= w; } return(pout); }/* multiply together matrices c = ab *//* note that c must not point to either of the input matrices */Matrix3 *V2MatMul(a, b, c)Matrix3 *a, *b, *c;{int i, j, k; for (i=0; i<3; i++) { for (j=0; j<3; j++) { c->element[i][j] = 0; for (k=0; k<3; k++) c->element[i][j] += a->element[i][k] * b->element[k][j]; } } return(c); }/* transpose matrix a, return b */Matrix3 *TransposeMatrix3(a, b)Matrix3 *a, *b;{int i, j; for (i=0; i<3; i++) { for (j=0; j<3; j++) b->element[i][j] = a->element[j][i]; } return(b); }/******************//* 3d Library *//******************/ /* returns squared length of input vector */ double V3SquaredLength(a) Vector3 *a;{ return((a->x * a->x)+(a->y * a->y)+(a->z * a->z)); }/* returns length of input vector */double V3Length(a) Vector3 *a;{ return(sqrt(V3SquaredLength(a))); }/* negates the input vector and returns it */Vector3 *V3Negate(v) Vector3 *v;{ v->x = -v->x; v->y = -v->y; v->z = -v->z; return(v); }/* normalizes the input vector and returns it */Vector3 *V3Normalize(v) Vector3 *v;{double len = V3Length(v); if (len != 0.0) { v->x /= len; v->y /= len; v->z /= len; } return(v); }/* scales the input vector to the new length and returns it */Vector3 *V3Scale(v, newlen) Vector3 *v;double newlen;{double len = V3Length(v); if (len != 0.0) { v->x *= newlen/len; v->y *= newlen/len; v->z *= newlen/len; } return(v); }/* return vector sum c = a+b */Vector3 *V3Add(a, b, c)Vector3 *a, *b, *c;{ c->x = a->x+b->x; c->y = a->y+b->y; c->z = a->z+b->z; return(c); } /* return vector difference c = a-b */Vector3 *V3Sub(a, b, c)Vector3 *a, *b, *c;{ c->x = a->x-b->x; c->y = a->y-b->y; c->z = a->z-b->z; return(c); }/* return the dot product of vectors a and b */double V3Dot(a, b) Vector3 *a, *b; { return((a->x*b->x)+(a->y*b->y)+(a->z*b->z)); }/* linearly interpolate between vectors by an amount alpha *//* and return the resulting vector. *//* When alpha=0, result=lo. When alpha=1, result=hi. */Vector3 *V3Lerp(lo, hi, alpha, result) Vector3 *lo, *hi, *result; double alpha;{ result->x = LERP(alpha, lo->x, hi->x); result->y = LERP(alpha, lo->y, hi->y); result->z = LERP(alpha, lo->z, hi->z); return(result); }/* make a linear combination of two vectors and return the result. *//* result = (a * ascl) + (b * bscl) */Vector3 *V3Combine (a, b, result, ascl, bscl) Vector3 *a, *b, *result;double ascl, bscl;{ result->x = (ascl * a->x) + (bscl * b->x); result->y = (ascl * a->y) + (bscl * b->y); result->z = (ascl * a->z) + (bscl * b->z); return(result); }/* multiply two vectors together component-wise and return the result */Vector3 *V3Mul (a, b, result) Vector3 *a, *b, *result;{ result->x = a->x * b->x; result->y = a->y * b->y; result->z = a->z * b->z; return(result); }/* return the distance between two points */double V3DistanceBetween2Points(a, b)Point3 *a, *b;{double dx = a->x - b->x;double dy = a->y - b->y;double dz = a->z - b->z; return(sqrt((dx*dx)+(dy*dy)+(dz*dz))); }/* return the cross product c = a cross b */Vector3 *V3Cross(a, b, c)Vector3 *a, *b, *c;{ c->x = (a->y*b->z) - (a->z*b->y); c->y = (a->z*b->x) - (a->x*b->z); c->z = (a->x*b->y) - (a->y*b->x); return(c); }/* create, initialize, and return a new vector */Vector3 *V3New(x, y, z)double x, y, z;{Vector3 *v = NEWTYPE(Vector3); v->x = x; v->y = y; v->z = z; return(v); }/* create, initialize, and return a duplicate vector */Vector3 *V3Duplicate(a)Vector3 *a;{Vector3 *v = NEWTYPE(Vector3); v->x = a->x; v->y = a->y; v->z = a->z; return(v); } /* multiply a point by a matrix and return the transformed point */Point3 *V3MulPointByMatrix(pin, m, pout)Point3 *pin, *pout;Matrix3 *m;{ pout->x = (pin->x * m->element[0][0]) + (pin->y * m->element[1][0]) + (pin->z * m->element[2][0]); pout->y = (pin->x * m->element[0][1]) + (pin->y * m->element[1][1]) + (pin->z * m->element[2][1]); pout->z = (pin->x * m->element[0][2]) + (pin->y * m->element[1][2]) + (pin->z * m->element[2][2]); return(pout); }/* multiply a point by a projective matrix and return the transformed point */Point3 *V3MulPointByProjMatrix(pin, m, pout)Point3 *pin, *pout;Matrix4 *m;{double w; pout->x = (pin->x * m->element[0][0]) + (pin->y * m->element[1][0]) + (pin->z * m->element[2][0]) + m->element[3][0]; pout->y = (pin->x * m->element[0][1]) + (pin->y * m->element[1][1]) + (pin->z * m->element[2][1]) + m->element[3][1]; pout->z = (pin->x * m->element[0][2]) + (pin->y * m->element[1][2]) + (pin->z * m->element[2][2]) + m->element[3][2]; w = (pin->x * m->element[0][3]) + (pin->y * m->element[1][3]) + (pin->z * m->element[2][3]) + m->element[3][3]; if (w != 0.0) { pout->x /= w; pout->y /= w; pout->z /= w; } return(pout); }/* multiply together matrices c = ab *//* note that c must not point to either of the input matrices */Matrix4 *V3MatMul(a, b, c)Matrix4 *a, *b, *c;{int i, j, k; for (i=0; i<4; i++) { for (j=0; j<4; j++) { c->element[i][j] = 0; for (k=0; k<4; k++) c->element[i][j] += a->element[i][k] * b->element[k][j]; } } return(c); }/* binary greatest common divisor by Silver and Terzian. See Knuth *//* both inputs must be >= 0 */gcd(u, v)int u, v;{int t, f; if ((u<0) || (v<0)) return(1); /* error if u<0 or v<0 */ f = 1; while ((0 == (u%2)) && (0 == (v%2))) { u>>=1; v>>=1, f*=2; } if (u&01) { t = -v; goto B4; } else { t = u; } B3: if (t > 0) { t >>= 1; } else { t = -((-t) >> 1); } B4: if (0 == (t%2)) goto B3; if (t > 0) u = t; else v = -t; if (0 != (t = u - v)) goto B3; return(u*f); } /***********************//* Useful Routines *//***********************//* return roots of ax^2+bx+c *//* stable algebra derived from Numerical Recipes by Press et al.*/int quadraticRoots(a, b, c, roots)double a, b, c, *roots;{double d, q;int count = 0; d = (b*b)-(4*a*c); if (d < 0.0) { *roots = *(roots+1) = 0.0; return(0); } q = -0.5 * (b + (SGN(b)*sqrt(d))); if (a != 0.0) { *roots++ = q/a; count++; } if (q != 0.0) { *roots++ = c/q; count++; } return(count); }/* generic 1d regula-falsi step. f is function to evaluate *//* interval known to contain root is given in left, right *//* returns new estimate */double RegulaFalsi(f, left, right)double (*f)(), left, right;{double d = (*f)(right) - (*f)(left); if (d != 0.0) return (right - (*f)(right)*(right-left)/d); return((left+right)/2.0); }/* generic 1d Newton-Raphson step. f is function, df is derivative *//* x is current best guess for root location. Returns new estimate */double NewtonRaphson(f, df, x)double (*f)(), (*df)(), x;{double d = (*df)(x); if (d != 0.0) return (x-((*f)(x)/d)); return(x-1.0); }/* hybrid 1d Newton-Raphson/Regula Falsi root finder. *//* input function f and its derivative df, an interval *//* left, right known to contain the root, and an error tolerance *//* Based on Blinn */double findroot(left, right, tolerance, f, df)double left, right, tolerance;double (*f)(), (*df)();{double newx = left; while (ABS((*f)(newx)) > tolerance) { newx = NewtonRaphson(f, df, newx); if (newx < left || newx > right) newx = RegulaFalsi(f, left, right); if ((*f)(newx) * (*f)(left) <= 0.0) right = newx; else left = newx; } return(newx); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -