📄 algebra3.c
字号:
a.n[VW]*d_inv); }int operator == (const vec4& a, const vec4& b){ return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]) && (a.n[VZ] == b.n[VZ]) && (a.n[VW] == b.n[VW]); }int operator != (const vec4& a, const vec4& b){ return !(a == b); }ostream& operator << (ostream& s, vec4& v){ return s << "| " << v.n[VX] << ' ' << v.n[VY] << ' ' << v.n[VZ] << ' ' << v.n[VW] << " |"; }istream& operator >> (istream& s, vec4& v) { vec4 v_tmp; char c = ' '; while (isspace(c)) s >> c; // The vectors can be formatted either as x y z w or | x y z w | if (c == '|') { s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ] >> v_tmp[VW]; while (s >> c && isspace(c)) ; if (c != '|') s.set(_bad); } else { s.putback(c); s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ] >> v_tmp[VW]; } if (s) v = v_tmp; return s;}void swap(vec4& a, vec4& b){ vec4 tmp(a); a = b; b = tmp; }vec4 min(const vec4& a, const vec4& b){ return vec4(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY]), MIN(a.n[VZ], b.n[VZ]), MIN(a.n[VW], b.n[VW])); }vec4 max(const vec4& a, const vec4& b){ return vec4(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY]), MAX(a.n[VZ], b.n[VZ]), MAX(a.n[VW], b.n[VW])); }vec4 prod(const vec4& a, const vec4& b){ return vec4(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY], a.n[VZ] * b.n[VZ], a.n[VW] * b.n[VW]); }/***************************************************************** ** mat3 member functions ** *****************************************************************/// CONSTRUCTORSmat3::mat3() {}mat3::mat3(const vec3& v0, const vec3& v1, const vec3& v2){ v[0] = v0; v[1] = v1; v[2] = v2; }mat3::mat3(const double d){ v[0] = v[1] = v[2] = vec3(d); }mat3::mat3(const mat3& m){ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; }// ASSIGNMENT OPERATORSmat3& mat3::operator = ( const mat3& m ){ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; return *this; }mat3& mat3::operator += ( const mat3& m ){ v[0] += m.v[0]; v[1] += m.v[1]; v[2] += m.v[2]; return *this; }mat3& mat3::operator -= ( const mat3& m ){ v[0] -= m.v[0]; v[1] -= m.v[1]; v[2] -= m.v[2]; return *this; }mat3& mat3::operator *= ( const double d ){ v[0] *= d; v[1] *= d; v[2] *= d; return *this; }mat3& mat3::operator /= ( const double d ){ v[0] /= d; v[1] /= d; v[2] /= d; return *this; }vec3& mat3::operator [] ( int i) { if (i < VX || i > VZ) V_ERROR("mat3 [] operator: illegal access; index = " << i << '\n') return v[i];}// SPECIAL FUNCTIONSmat3 mat3::transpose() { return mat3(vec3(v[0][0], v[1][0], v[2][0]), vec3(v[0][1], v[1][1], v[2][1]), vec3(v[0][2], v[1][2], v[2][2]));}mat3 mat3::inverse() // Gauss-Jordan elimination with partial pivoting { mat3 a(*this), // As a evolves from original mat into identity b(identity2D()); // b evolves from identity into inverse(a) int i, j, i1; // Loop over cols of a from left to right, eliminating above and below diag for (j=0; j<3; j++) { // Find largest pivot in column j among rows j..2 i1 = j; // Row with largest pivot candidate for (i=j+1; i<3; i++) if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j])) i1 = i; // Swap rows i1 and j in a and b to put pivot on diagonal swap(a.v[i1], a.v[j]); swap(b.v[i1], b.v[j]); // Scale row j to have a unit diagonal if (a.v[j].n[j]==0.) V_ERROR("mat3::inverse: singular matrix; can't invert\n") b.v[j] /= a.v[j].n[j]; a.v[j] /= a.v[j].n[j]; // Eliminate off-diagonal elems in col j of a, doing identical ops to b for (i=0; i<3; i++) if (i!=j) { b.v[i] -= a.v[i].n[j]*b.v[j]; a.v[i] -= a.v[i].n[j]*a.v[j]; } } return b;}mat3& mat3::apply(V_FCT_PTR fct) { v[VX].apply(fct); v[VY].apply(fct); v[VZ].apply(fct); return *this;}// FRIENDSmat3 operator - (const mat3& a){ return mat3(-a.v[0], -a.v[1], -a.v[2]); }mat3 operator + (const mat3& a, const mat3& b){ return mat3(a.v[0] + b.v[0], a.v[1] + b.v[1], a.v[2] + b.v[2]); }mat3 operator - (const mat3& a, const mat3& b){ return mat3(a.v[0] - b.v[0], a.v[1] - b.v[1], a.v[2] - b.v[2]); }mat3 operator * (mat3& a, mat3& b) { #define ROWCOL(i, j) \ a.v[i].n[0]*b.v[0][j] + a.v[i].n[1]*b.v[1][j] + a.v[i].n[2]*b.v[2][j] return mat3(vec3(ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2)), vec3(ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2)), vec3(ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2))); #undef ROWCOL}mat3 operator * (const mat3& a, const double d){ return mat3(a.v[0] * d, a.v[1] * d, a.v[2] * d); }mat3 operator * (const double d, const mat3& a){ return a*d; }mat3 operator / (const mat3& a, const double d){ return mat3(a.v[0] / d, a.v[1] / d, a.v[2] / d); }int operator == (const mat3& a, const mat3& b){ return (a.v[0] == b.v[0]) && (a.v[1] == b.v[1]) && (a.v[2] == b.v[2]); }int operator != (const mat3& a, const mat3& b){ return !(a == b); }ostream& operator << (ostream& s, mat3& m){ return s << m.v[VX] << '\n' << m.v[VY] << '\n' << m.v[VZ]; }istream& operator >> (istream& s, mat3& m) { mat3 m_tmp; s >> m_tmp[VX] >> m_tmp[VY] >> m_tmp[VZ]; if (s) m = m_tmp; return s;}void swap(mat3& a, mat3& b){ mat3 tmp(a); a = b; b = tmp; }/***************************************************************** ** mat4 member functions ** *****************************************************************/// CONSTRUCTORSmat4::mat4() {}mat4::mat4(const vec4& v0, const vec4& v1, const vec4& v2, const vec4& v3){ v[0] = v0; v[1] = v1; v[2] = v2; v[3] = v3; }mat4::mat4(const double d){ v[0] = v[1] = v[2] = v[3] = vec4(d); }mat4::mat4(const mat4& m){ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; v[3] = m.v[3]; }// ASSIGNMENT OPERATORSmat4& mat4::operator = ( const mat4& m ){ v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; v[3] = m.v[3];return *this; }mat4& mat4::operator += ( const mat4& m ){ v[0] += m.v[0]; v[1] += m.v[1]; v[2] += m.v[2]; v[3] += m.v[3];return *this; }mat4& mat4::operator -= ( const mat4& m ){ v[0] -= m.v[0]; v[1] -= m.v[1]; v[2] -= m.v[2]; v[3] -= m.v[3];return *this; }mat4& mat4::operator *= ( const double d ){ v[0] *= d; v[1] *= d; v[2] *= d; v[3] *= d; return *this; }mat4& mat4::operator /= ( const double d ){ v[0] /= d; v[1] /= d; v[2] /= d; v[3] /= d; return *this; }vec4& mat4::operator [] ( int i) { if (i < VX || i > VW) V_ERROR("mat4 [] operator: illegal access; index = " << i << '\n') return v[i];}// SPECIAL FUNCTIONS;mat4 mat4::transpose() { return mat4(vec4(v[0][0], v[1][0], v[2][0], v[3][0]), vec4(v[0][1], v[1][1], v[2][1], v[3][1]), vec4(v[0][2], v[1][2], v[2][2], v[3][2]), vec4(v[0][3], v[1][3], v[2][3], v[3][3]));}mat4 mat4::inverse() // Gauss-Jordan elimination with partial pivoting{ mat4 a(*this), // As a evolves from original mat into identity b(identity3D()); // b evolves from identity into inverse(a) int i, j, i1; // Loop over cols of a from left to right, eliminating above and below diag for (j=0; j<4; j++) { // Find largest pivot in column j among rows j..3 i1 = j; // Row with largest pivot candidate for (i=j+1; i<4; i++) if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j])) i1 = i; // Swap rows i1 and j in a and b to put pivot on diagonal swap(a.v[i1], a.v[j]); swap(b.v[i1], b.v[j]); // Scale row j to have a unit diagonal if (a.v[j].n[j]==0.) V_ERROR("mat4::inverse: singular matrix; can't invert\n"); b.v[j] /= a.v[j].n[j]; a.v[j] /= a.v[j].n[j]; // Eliminate off-diagonal elems in col j of a, doing identical ops to b for (i=0; i<4; i++) if (i!=j) { b.v[i] -= a.v[i].n[j]*b.v[j]; a.v[i] -= a.v[i].n[j]*a.v[j]; } } return b;}mat4& mat4::apply(V_FCT_PTR fct){ v[VX].apply(fct); v[VY].apply(fct); v[VZ].apply(fct); v[VW].apply(fct);return *this; }// FRIENDSmat4 operator - (const mat4& a){ return mat4(-a.v[0], -a.v[1], -a.v[2], -a.v[3]); }mat4 operator + (const mat4& a, const mat4& b){ return mat4(a.v[0] + b.v[0], a.v[1] + b.v[1], a.v[2] + b.v[2], a.v[3] + b.v[3]);}mat4 operator - (const mat4& a, const mat4& b){ return mat4(a.v[0] - b.v[0], a.v[1] - b.v[1], a.v[2] - b.v[2], a.v[3] - b.v[3]); }mat4 operator * (mat4& a, mat4& b) { #define ROWCOL(i, j) a.v[i].n[0]*b.v[0][j] + a.v[i].n[1]*b.v[1][j] + \ a.v[i].n[2]*b.v[2][j] + a.v[i].n[3]*b.v[3][j] return mat4( vec4(ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2), ROWCOL(0,3)), vec4(ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2), ROWCOL(1,3)), vec4(ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2), ROWCOL(2,3)), vec4(ROWCOL(3,0), ROWCOL(3,1), ROWCOL(3,2), ROWCOL(3,3)) );}mat4 operator * (const mat4& a, const double d){ return mat4(a.v[0] * d, a.v[1] * d, a.v[2] * d, a.v[3] * d); }mat4 operator * (const double d, const mat4& a){ return a*d; }mat4 operator / (const mat4& a, const double d){ return mat4(a.v[0] / d, a.v[1] / d, a.v[2] / d, a.v[3] / d); }int operator == (const mat4& a, const mat4& b){ return ((a.v[0] == b.v[0]) && (a.v[1] == b.v[1]) && (a.v[2] == b.v[2]) && (a.v[3] == b.v[3])); }int operator != (const mat4& a, const mat4& b){ return !(a == b); }ostream& operator << (ostream& s, mat4& m){ return s << m.v[VX] << '\n' << m.v[VY] << '\n' << m.v[VZ] << '\n' << m.v[VW]; }istream& operator >> (istream& s, mat4& m){ mat4 m_tmp; s >> m_tmp[VX] >> m_tmp[VY] >> m_tmp[VZ] >> m_tmp[VW]; if (s) m = m_tmp; return s;}void swap(mat4& a, mat4& b){ mat4 tmp(a); a = b; b = tmp; }/***************************************************************** ** 2D functions and 3D functions ** *****************************************************************/mat3 identity2D(){ return mat3(vec3(1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, 0.0, 1.0)); }mat3 translation2D(vec2& v){ return mat3(vec3(1.0, 0.0, v[VX]), vec3(0.0, 1.0, v[VY]), vec3(0.0, 0.0, 1.0)); }mat3 rotation2D(vec2& Center, const double angleDeg) { double angleRad = angleDeg * M_PI / 180.0, c = cos(angleRad), s = sin(angleRad); return mat3(vec3(c, -s, Center[VX] * (1.0-c) + Center[VY] * s), vec3(s, c, Center[VY] * (1.0-c) - Center[VX] * s), vec3(0.0, 0.0, 1.0));}mat3 scaling2D(vec2& scaleVector){ return mat3(vec3(scaleVector[VX], 0.0, 0.0), vec3(0.0, scaleVector[VY], 0.0), vec3(0.0, 0.0, 1.0)); }mat4 identity3D(){ return mat4(vec4(1.0, 0.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)); }mat4 translation3D(vec3& v){ return mat4(vec4(1.0, 0.0, 0.0, v[VX]), vec4(0.0, 1.0, 0.0, v[VY]), vec4(0.0, 0.0, 1.0, v[VZ]), vec4(0.0, 0.0, 0.0, 1.0)); }mat4 rotation3D(vec3& Axis, const double angleDeg) { double angleRad = angleDeg * M_PI / 180.0, c = cos(angleRad), s = sin(angleRad), t = 1.0 - c; Axis.normalize(); return mat4(vec4(t * Axis[VX] * Axis[VX] + c, t * Axis[VX] * Axis[VY] - s * Axis[VZ], t * Axis[VX] * Axis[VZ] + s * Axis[VY], 0.0), vec4(t * Axis[VX] * Axis[VY] + s * Axis[VZ], t * Axis[VY] * Axis[VY] + c, t * Axis[VY] * Axis[VZ] - s * Axis[VX], 0.0), vec4(t * Axis[VX] * Axis[VZ] - s * Axis[VY], t * Axis[VY] * Axis[VZ] + s * Axis[VX], t * Axis[VZ] * Axis[VZ] + c, 0.0), vec4(0.0, 0.0, 0.0, 1.0));}mat4 scaling3D(vec3& scaleVector){ return mat4(vec4(scaleVector[VX], 0.0, 0.0, 0.0), vec4(0.0, scaleVector[VY], 0.0, 0.0), vec4(0.0, 0.0, scaleVector[VZ], 0.0), vec4(0.0, 0.0, 0.0, 1.0)); }mat4 perspective3D(const double d){ return mat4(vec4(1.0, 0.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 1.0/d, 0.0)); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -