⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bitvec.c

📁 SQLite的VS2005封装
💻 C
字号:
/*** 2008 February 16**** The author disclaims copyright to this source code.  In place of** a legal notice, here is a blessing:****    May you do good and not evil.**    May you find forgiveness for yourself and forgive others.**    May you share freely, never taking more than you give.***************************************************************************** This file implements an object that represents a fixed-length** bitmap.  Bits are numbered starting with 1.**** A bitmap is used to record what pages a database file have been** journalled during a transaction.  Usually only a few pages are** journalled.  So the bitmap is usually sparse and has low cardinality.** But sometimes (for example when during a DROP of a large table) most** or all of the pages get journalled.  In those cases, the bitmap becomes** dense.  The algorithm needs to handle both cases well.**** The size of the bitmap is fixed when the object is created.**** All bits are clear when the bitmap is created.  Individual bits** may be set or cleared one at a time.**** Test operations are about 100 times more common that set operations.** Clear operations are exceedingly rare.  There are usually between** 5 and 500 set operations per Bitvec object, though the number of sets can** sometimes grow into tens of thousands or larger.  The size of the** Bitvec object is the number of pages in the database file at the** start of a transaction, and is thus usually less than a few thousand,** but can be as large as 2 billion for a really big database.**** @(#) $Id: bitvec.c,v 1.6 2008/06/20 14:59:51 danielk1977 Exp $*/#include "sqliteInt.h"#define BITVEC_SZ        512/* Round the union size down to the nearest pointer boundary, since that's how ** it will be aligned within the Bitvec struct. */#define BITVEC_USIZE     (((BITVEC_SZ-12)/sizeof(Bitvec*))*sizeof(Bitvec*))#define BITVEC_NCHAR     BITVEC_USIZE#define BITVEC_NBIT      (BITVEC_NCHAR*8)#define BITVEC_NINT      (BITVEC_USIZE/4)#define BITVEC_MXHASH    (BITVEC_NINT/2)#define BITVEC_NPTR      (BITVEC_USIZE/sizeof(Bitvec *))#define BITVEC_HASH(X)   (((X)*37)%BITVEC_NINT)/*** A bitmap is an instance of the following structure.**** This bitmap records the existance of zero or more bits** with values between 1 and iSize, inclusive.**** There are three possible representations of the bitmap.** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight** bitmap.  The least significant bit is bit 1.**** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is** a hash table that will hold up to BITVEC_MXHASH distinct values.**** Otherwise, the value i is redirected into one of BITVEC_NPTR** sub-bitmaps pointed to by Bitvec.u.apSub[].  Each subbitmap** handles up to iDivisor separate values of i.  apSub[0] holds** values between 1 and iDivisor.  apSub[1] holds values between** iDivisor+1 and 2*iDivisor.  apSub[N] holds values between** N*iDivisor+1 and (N+1)*iDivisor.  Each subbitmap is normalized** to hold deal with values between 1 and iDivisor.*/struct Bitvec {  u32 iSize;      /* Maximum bit index */  u32 nSet;       /* Number of bits that are set */  u32 iDivisor;   /* Number of bits handled by each apSub[] entry */  union {    u8 aBitmap[BITVEC_NCHAR];    /* Bitmap representation */    u32 aHash[BITVEC_NINT];      /* Hash table representation */    Bitvec *apSub[BITVEC_NPTR];  /* Recursive representation */  } u;};/*** Create a new bitmap object able to handle bits between 0 and iSize,** inclusive.  Return a pointer to the new object.  Return NULL if ** malloc fails.*/Bitvec *sqlite3BitvecCreate(u32 iSize){  Bitvec *p;  assert( sizeof(*p)==BITVEC_SZ );  p = sqlite3MallocZero( sizeof(*p) );  if( p ){    p->iSize = iSize;  }  return p;}/*** Check to see if the i-th bit is set.  Return true or false.** If p is NULL (if the bitmap has not been created) or if** i is out of range, then return false.*/int sqlite3BitvecTest(Bitvec *p, u32 i){  if( p==0 ) return 0;  if( i>p->iSize || i==0 ) return 0;  if( p->iSize<=BITVEC_NBIT ){    i--;    return (p->u.aBitmap[i/8] & (1<<(i&7)))!=0;  }  if( p->iDivisor>0 ){    u32 bin = (i-1)/p->iDivisor;    i = (i-1)%p->iDivisor + 1;    return sqlite3BitvecTest(p->u.apSub[bin], i);  }else{    u32 h = BITVEC_HASH(i);    while( p->u.aHash[h] ){      if( p->u.aHash[h]==i ) return 1;      h++;      if( h>=BITVEC_NINT ) h = 0;    }    return 0;  }}/*** Set the i-th bit.  Return 0 on success and an error code if** anything goes wrong.*/int sqlite3BitvecSet(Bitvec *p, u32 i){  u32 h;  assert( p!=0 );  assert( i>0 );  assert( i<=p->iSize );  if( p->iSize<=BITVEC_NBIT ){    i--;    p->u.aBitmap[i/8] |= 1 << (i&7);    return SQLITE_OK;  }  if( p->iDivisor ){    u32 bin = (i-1)/p->iDivisor;    i = (i-1)%p->iDivisor + 1;    if( p->u.apSub[bin]==0 ){      sqlite3BeginBenignMalloc();      p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );      sqlite3EndBenignMalloc();      if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM;    }    return sqlite3BitvecSet(p->u.apSub[bin], i);  }  h = BITVEC_HASH(i);  while( p->u.aHash[h] ){    if( p->u.aHash[h]==i ) return SQLITE_OK;    h++;    if( h==BITVEC_NINT ) h = 0;  }  p->nSet++;  if( p->nSet>=BITVEC_MXHASH ){    int j, rc;    u32 aiValues[BITVEC_NINT];    memcpy(aiValues, p->u.aHash, sizeof(aiValues));    memset(p->u.apSub, 0, sizeof(p->u.apSub[0])*BITVEC_NPTR);    p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;    rc = sqlite3BitvecSet(p, i);    for(j=0; j<BITVEC_NINT; j++){      if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);    }    return rc;  }  p->u.aHash[h] = i;  return SQLITE_OK;}/*** Clear the i-th bit.  Return 0 on success and an error code if** anything goes wrong.*/void sqlite3BitvecClear(Bitvec *p, u32 i){  assert( p!=0 );  assert( i>0 );  if( p->iSize<=BITVEC_NBIT ){    i--;    p->u.aBitmap[i/8] &= ~(1 << (i&7));  }else if( p->iDivisor ){    u32 bin = (i-1)/p->iDivisor;    i = (i-1)%p->iDivisor + 1;    if( p->u.apSub[bin] ){      sqlite3BitvecClear(p->u.apSub[bin], i);    }  }else{    int j;    u32 aiValues[BITVEC_NINT];    memcpy(aiValues, p->u.aHash, sizeof(aiValues));    memset(p->u.aHash, 0, sizeof(p->u.aHash[0])*BITVEC_NINT);    p->nSet = 0;    for(j=0; j<BITVEC_NINT; j++){      if( aiValues[j] && aiValues[j]!=i ){        sqlite3BitvecSet(p, aiValues[j]);      }    }  }}/*** Destroy a bitmap object.  Reclaim all memory used.*/void sqlite3BitvecDestroy(Bitvec *p){  if( p==0 ) return;  if( p->iDivisor ){    int i;    for(i=0; i<BITVEC_NPTR; i++){      sqlite3BitvecDestroy(p->u.apSub[i]);    }  }  sqlite3_free(p);}#ifndef SQLITE_OMIT_BUILTIN_TEST/*** Let V[] be an array of unsigned characters sufficient to hold** up to N bits.  Let I be an integer between 0 and N.  0<=I<N.** Then the following macros can be used to set, clear, or test** individual bits within V.*/#define SETBIT(V,I)      V[I>>3] |= (1<<(I&7))#define CLEARBIT(V,I)    V[I>>3] &= ~(1<<(I&7))#define TESTBIT(V,I)     (V[I>>3]&(1<<(I&7)))!=0/*** This routine runs an extensive test of the Bitvec code.**** The input is an array of integers that acts as a program** to test the Bitvec.  The integers are opcodes followed** by 0, 1, or 3 operands, depending on the opcode.  Another** opcode follows immediately after the last operand.**** There are 6 opcodes numbered from 0 through 5.  0 is the** "halt" opcode and causes the test to end.****    0          Halt and return the number of errors**    1 N S X    Set N bits beginning with S and incrementing by X**    2 N S X    Clear N bits beginning with S and incrementing by X**    3 N        Set N randomly chosen bits**    4 N        Clear N randomly chosen bits**    5 N S X    Set N bits from S increment X in array only, not in bitvec**** The opcodes 1 through 4 perform set and clear operations are performed** on both a Bitvec object and on a linear array of bits obtained from malloc.** Opcode 5 works on the linear array only, not on the Bitvec.** Opcode 5 is used to deliberately induce a fault in order to** confirm that error detection works.**** At the conclusion of the test the linear array is compared** against the Bitvec object.  If there are any differences,** an error is returned.  If they are the same, zero is returned.**** If a memory allocation error occurs, return -1.*/int sqlite3BitvecBuiltinTest(int sz, int *aOp){  Bitvec *pBitvec = 0;  unsigned char *pV = 0;  int rc = -1;  int i, nx, pc, op;  /* Allocate the Bitvec to be tested and a linear array of  ** bits to act as the reference */  pBitvec = sqlite3BitvecCreate( sz );  pV = sqlite3_malloc( (sz+7)/8 + 1 );  if( pBitvec==0 || pV==0 ) goto bitvec_end;  memset(pV, 0, (sz+7)/8 + 1);  /* Run the program */  pc = 0;  while( (op = aOp[pc])!=0 ){    switch( op ){      case 1:      case 2:      case 5: {        nx = 4;        i = aOp[pc+2] - 1;        aOp[pc+2] += aOp[pc+3];        break;      }      case 3:      case 4:       default: {        nx = 2;        sqlite3_randomness(sizeof(i), &i);        break;      }    }    if( (--aOp[pc+1]) > 0 ) nx = 0;    pc += nx;    i = (i & 0x7fffffff)%sz;    if( (op & 1)!=0 ){      SETBIT(pV, (i+1));      if( op!=5 ){        if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;      }    }else{      CLEARBIT(pV, (i+1));      sqlite3BitvecClear(pBitvec, i+1);    }  }  /* Test to make sure the linear array exactly matches the  ** Bitvec object.  Start with the assumption that they do  ** match (rc==0).  Change rc to non-zero if a discrepancy  ** is found.  */  rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)          + sqlite3BitvecTest(pBitvec, 0);  for(i=1; i<=sz; i++){    if(  (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){      rc = i;      break;    }  }  /* Free allocated structure */bitvec_end:  sqlite3_free(pV);  sqlite3BitvecDestroy(pBitvec);  return rc;}#endif /* SQLITE_OMIT_BUILTIN_TEST */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -