📄 mem6.c
字号:
/*** 2008 July 24**** The author disclaims copyright to this source code. In place of** a legal notice, here is a blessing:**** May you do good and not evil.** May you find forgiveness for yourself and forgive others.** May you share freely, never taking more than you give.******************************************************************************* This file contains an alternative memory allocation system for SQLite.** This system is implemented as a wrapper around the system provided** by the operating system - vanilla malloc(), realloc() and free().**** This system differentiates between requests for "small" allocations ** (by default those of 128 bytes or less) and "large" allocations (all** others). The 256 byte threshhold is configurable at runtime.**** All requests for large allocations are passed through to the ** default system.**** Requests for small allocations are met by allocating space within** one or more larger "chunks" of memory obtained from the default** memory allocation system. Chunks of memory are usually 64KB or ** larger. The algorithm used to manage space within each chunk is** the same as that used by mem5.c. **** This strategy is designed to prevent the default memory allocation** system (usually the system malloc) from suffering from heap ** fragmentation. On some systems, heap fragmentation can cause a ** significant real-time slowdown.**** $Id: mem6.c,v 1.10 2008/09/02 17:52:52 danielk1977 Exp $*/#ifdef SQLITE_ENABLE_MEMSYS6#include "sqliteInt.h"/*** Maximum size of any "small" allocation is ((1<<LOGMAX)*Mem6Chunk.nAtom).** Mem6Chunk.nAtom is always at least 8, so this is not a practical** limitation*/#define LOGMAX 30/*** Default value for the "small" allocation size threshold.*/#define SMALL_MALLOC_DEFAULT_THRESHOLD 256/*** Minimum size for a memory chunk.*/#define MIN_CHUNKSIZE (1<<16)#define LOG2_MINALLOC 4typedef struct Mem6Chunk Mem6Chunk;typedef struct Mem6Link Mem6Link;/*** A minimum allocation is an instance of the following structure.** Larger allocations are an array of these structures where the** size of the array is a power of 2.*/struct Mem6Link { int next; /* Index of next free chunk */ int prev; /* Index of previous free chunk */};/*** Masks used for mem5.aCtrl[] elements.*/#define CTRL_LOGSIZE 0x1f /* Log2 Size of this block relative to POW2_MIN */#define CTRL_FREE 0x20 /* True if not checked out */struct Mem6Chunk { Mem6Chunk *pNext; /* ** Lists of free blocks of various sizes. */ int aiFreelist[LOGMAX+1]; int nCheckedOut; /* Number of currently outstanding allocations */ /* ** Space for tracking which blocks are checked out and the size ** of each block. One byte per block. */ u8 *aCtrl; /* ** Memory available for allocation */ int nAtom; /* Smallest possible allocation in bytes */ int nBlock; /* Number of nAtom sized blocks in zPool */ u8 *zPool; /* Pointer to memory chunk from which allocations are made */};#define MEM6LINK(idx) ((Mem6Link *)(&pChunk->zPool[(idx)*pChunk->nAtom]))static SQLITE_WSD struct Mem6Global { int nMinAlloc; /* Minimum allowed allocation size */ int nThreshold; /* Allocs larger than this go to malloc() */ int nLogThreshold; /* log2 of (nThreshold/nMinAlloc) */ sqlite3_mutex *mutex; Mem6Chunk *pChunk; /* Singly linked list of all memory chunks */} mem6 = { 48642791 };#define mem6 GLOBAL(struct Mem6Global, mem6)/*** Unlink the chunk at pChunk->aPool[i] from list it is currently** on. It should be found on pChunk->aiFreelist[iLogsize].*/static void memsys6Unlink(Mem6Chunk *pChunk, int i, int iLogsize){ int next, prev; assert( i>=0 && i<pChunk->nBlock ); assert( iLogsize>=0 && iLogsize<=mem6.nLogThreshold ); assert( (pChunk->aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); next = MEM6LINK(i)->next; prev = MEM6LINK(i)->prev; if( prev<0 ){ pChunk->aiFreelist[iLogsize] = next; }else{ MEM6LINK(prev)->next = next; } if( next>=0 ){ MEM6LINK(next)->prev = prev; }}/*** Link the chunk at mem5.aPool[i] so that is on the iLogsize** free list.*/static void memsys6Link(Mem6Chunk *pChunk, int i, int iLogsize){ int x; assert( i>=0 && i<pChunk->nBlock ); assert( iLogsize>=0 && iLogsize<=mem6.nLogThreshold ); assert( (pChunk->aCtrl[i] & CTRL_LOGSIZE)==iLogsize ); x = MEM6LINK(i)->next = pChunk->aiFreelist[iLogsize]; MEM6LINK(i)->prev = -1; if( x>=0 ){ assert( x<pChunk->nBlock ); MEM6LINK(x)->prev = i; } pChunk->aiFreelist[iLogsize] = i;}/*** Find the first entry on the freelist iLogsize. Unlink that** entry and return its index. */static int memsys6UnlinkFirst(Mem6Chunk *pChunk, int iLogsize){ int i; int iFirst; assert( iLogsize>=0 && iLogsize<=mem6.nLogThreshold ); i = iFirst = pChunk->aiFreelist[iLogsize]; assert( iFirst>=0 ); memsys6Unlink(pChunk, iFirst, iLogsize); return iFirst;}static int roundupLog2(int n){ static const char LogTable256[256] = { 0, /* 1 */ 1, /* 2 */ 2, 2, /* 3..4 */ 3, 3, 3, 3, /* 5..8 */ 4, 4, 4, 4, 4, 4, 4, 4, /* 9..16 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, /* 17..32 */ 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, /* 33..64 */ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, /* 65..128 */ 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, /* 129..256 */ }; assert(n<=(1<<16) && n>0); if( n<=256 ) return LogTable256[n-1]; return LogTable256[(n>>8) - ((n&0xFF)?0:1)] + 8;}/*** Allocate and return a block of (pChunk->nAtom << iLogsize) bytes from chunk** pChunk. If the allocation request cannot be satisfied, return 0.*/static void *chunkMalloc(Mem6Chunk *pChunk, int iLogsize){ int i; /* Index of a mem5.aPool[] slot */ int iBin; /* Index into mem5.aiFreelist[] */ /* Make sure mem5.aiFreelist[iLogsize] contains at least one free ** block. If not, then split a block of the next larger power of ** two in order to create a new free block of size iLogsize. */ for(iBin=iLogsize; pChunk->aiFreelist[iBin]<0 && iBin<=mem6.nLogThreshold; iBin++){} if( iBin>mem6.nLogThreshold ) return 0; i = memsys6UnlinkFirst(pChunk, iBin); while( iBin>iLogsize ){ int newSize; iBin--; newSize = 1 << iBin; pChunk->aCtrl[i+newSize] = CTRL_FREE | iBin; memsys6Link(pChunk, i+newSize, iBin); } pChunk->aCtrl[i] = iLogsize; /* Return a pointer to the allocated memory. */ pChunk->nCheckedOut++; return (void*)&pChunk->zPool[i*pChunk->nAtom];}/*** Free the allocation pointed to by p, which is guaranteed to be non-zero** and a part of chunk object pChunk.*/static void chunkFree(Mem6Chunk *pChunk, void *pOld){ u32 size, iLogsize; int iBlock; /* Set iBlock to the index of the block pointed to by pOld in ** the array of pChunk->nAtom byte blocks pointed to by pChunk->zPool. */ iBlock = ((u8 *)pOld-pChunk->zPool)/pChunk->nAtom; /* Check that the pointer pOld points to a valid, non-free block. */ assert( iBlock>=0 && iBlock<pChunk->nBlock ); assert( ((u8 *)pOld-pChunk->zPool)%pChunk->nAtom==0 ); assert( (pChunk->aCtrl[iBlock] & CTRL_FREE)==0 ); iLogsize = pChunk->aCtrl[iBlock] & CTRL_LOGSIZE; size = 1<<iLogsize; assert( iBlock+size-1<pChunk->nBlock ); pChunk->aCtrl[iBlock] |= CTRL_FREE; pChunk->aCtrl[iBlock+size-1] |= CTRL_FREE; pChunk->aCtrl[iBlock] = CTRL_FREE | iLogsize; while( iLogsize<mem6.nLogThreshold ){ int iBuddy; if( (iBlock>>iLogsize) & 1 ){ iBuddy = iBlock - size; }else{ iBuddy = iBlock + size; } assert( iBuddy>=0 ); if( (iBuddy+(1<<iLogsize))>pChunk->nBlock ) break; if( pChunk->aCtrl[iBuddy]!=(CTRL_FREE | iLogsize) ) break; memsys6Unlink(pChunk, iBuddy, iLogsize); iLogsize++; if( iBuddy<iBlock ){ pChunk->aCtrl[iBuddy] = CTRL_FREE | iLogsize; pChunk->aCtrl[iBlock] = 0; iBlock = iBuddy; }else{ pChunk->aCtrl[iBlock] = CTRL_FREE | iLogsize; pChunk->aCtrl[iBuddy] = 0; } size *= 2; } pChunk->nCheckedOut--; memsys6Link(pChunk, iBlock, iLogsize);}/*** Return the actual size of the block pointed to by p, which is guaranteed** to have been allocated from chunk pChunk.*/static int chunkSize(Mem6Chunk *pChunk, void *p){ int iSize = 0; if( p ){ int i = ((u8 *)p-pChunk->zPool)/pChunk->nAtom; assert( i>=0 && i<pChunk->nBlock ); iSize = pChunk->nAtom * (1 << (pChunk->aCtrl[i]&CTRL_LOGSIZE)); } return iSize;}/*** Return true if there are currently no outstanding allocations.*/static int chunkIsEmpty(Mem6Chunk *pChunk){ return (pChunk->nCheckedOut==0);}/*** Initialize the buffer zChunk, which is nChunk bytes in size, as** an Mem6Chunk object. Return a copy of the zChunk pointer.*/static Mem6Chunk *chunkInit(u8 *zChunk, int nChunk, int nMinAlloc){ int ii; int iOffset; Mem6Chunk *pChunk = (Mem6Chunk *)zChunk; assert( nChunk>sizeof(Mem6Chunk) ); assert( nMinAlloc>sizeof(Mem6Link) ); memset(pChunk, 0, sizeof(Mem6Chunk)); pChunk->nAtom = nMinAlloc; pChunk->nBlock = ((nChunk-sizeof(Mem6Chunk)) / (pChunk->nAtom+sizeof(u8))); pChunk->zPool = (u8 *)&pChunk[1]; pChunk->aCtrl = &pChunk->zPool[pChunk->nBlock*pChunk->nAtom]; for(ii=0; ii<=mem6.nLogThreshold; ii++){ pChunk->aiFreelist[ii] = -1; } iOffset = 0; for(ii=mem6.nLogThreshold; ii>=0; ii--){ int nAlloc = (1<<ii); while( (iOffset+nAlloc)<=pChunk->nBlock ){ pChunk->aCtrl[iOffset] = ii | CTRL_FREE; memsys6Link(pChunk, iOffset, ii); iOffset += nAlloc; } } return pChunk;}static void mem6Enter(void){ sqlite3_mutex_enter(mem6.mutex);}static void mem6Leave(void){ sqlite3_mutex_leave(mem6.mutex);}/*** Based on the number and size of the currently allocated chunks, return** the size of the next chunk to allocate, in bytes.*/static int nextChunkSize(void){ int iTotal = MIN_CHUNKSIZE; Mem6Chunk *p; for(p=mem6.pChunk; p; p=p->pNext){ iTotal = iTotal*2; } return iTotal;}static void freeChunk(Mem6Chunk *pChunk){ Mem6Chunk **pp = &mem6.pChunk; for( pp=&mem6.pChunk; *pp!=pChunk; pp = &(*pp)->pNext ); *pp = (*pp)->pNext; free(pChunk);}static void *memsys6Malloc(int nByte){ Mem6Chunk *pChunk; void *p = 0; int nTotal = nByte+8; int iOffset = 0; if( nTotal>mem6.nThreshold ){ p = malloc(nTotal); }else{ int iLogsize = 0; if( nTotal>(1<<LOG2_MINALLOC) ){ iLogsize = roundupLog2(nTotal) - LOG2_MINALLOC; } mem6Enter(); for(pChunk=mem6.pChunk; pChunk; pChunk=pChunk->pNext){ p = chunkMalloc(pChunk, iLogsize); if( p ){ break; } } if( !p ){ int iSize = nextChunkSize(); p = malloc(iSize); if( p ){ pChunk = chunkInit((u8 *)p, iSize, mem6.nMinAlloc); pChunk->pNext = mem6.pChunk; mem6.pChunk = pChunk; p = chunkMalloc(pChunk, iLogsize); assert(p); } } iOffset = ((u8*)p - (u8*)pChunk); mem6Leave(); } if( !p ){ return 0; } ((u32 *)p)[0] = iOffset; ((u32 *)p)[1] = nByte; return &((u32 *)p)[2];}static int memsys6Size(void *pPrior){ if( pPrior==0 ) return 0; return ((u32*)pPrior)[-1];}static void memsys6Free(void *pPrior){ int iSlot; void *p = &((u32 *)pPrior)[-2]; iSlot = ((u32 *)p)[0]; if( iSlot ){ Mem6Chunk *pChunk; mem6Enter(); pChunk = (Mem6Chunk *)(&((u8 *)p)[-1 * iSlot]); chunkFree(pChunk, p); if( chunkIsEmpty(pChunk) ){ freeChunk(pChunk); } mem6Leave(); }else{ free(p); }}static void *memsys6Realloc(void *p, int nByte){ void *p2; if( p && nByte<=memsys6Size(p) ){ p2 = p; }else{ p2 = memsys6Malloc(nByte); if( p && p2 ){ memcpy(p2, p, memsys6Size(p)); memsys6Free(p); } } return p2;}static int memsys6Roundup(int n){ if( n>mem6.nThreshold ){ return n; }else{ return (1<<roundupLog2(n)); }}static int memsys6Init(void *pCtx){ u8 bMemstat = sqlite3GlobalConfig.bMemstat; mem6.nMinAlloc = (1 << LOG2_MINALLOC); mem6.pChunk = 0; mem6.nThreshold = sqlite3GlobalConfig.nSmall; if( mem6.nThreshold<=0 ){ mem6.nThreshold = SMALL_MALLOC_DEFAULT_THRESHOLD; } mem6.nLogThreshold = roundupLog2(mem6.nThreshold) - LOG2_MINALLOC; if( !bMemstat ){ mem6.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); } return SQLITE_OK;}static void memsys6Shutdown(void *pCtx){ memset(&mem6, 0, sizeof(mem6));}/*** This routine is the only routine in this file with external ** linkage. It returns a pointer to a static sqlite3_mem_methods** struct populated with the memsys6 methods.*/const sqlite3_mem_methods *sqlite3MemGetMemsys6(void){ static const sqlite3_mem_methods memsys6Methods = { memsys6Malloc, memsys6Free, memsys6Realloc, memsys6Size, memsys6Roundup, memsys6Init, memsys6Shutdown, 0 }; return &memsys6Methods;}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -