📄 at_hw.c
字号:
/*
* Copyright(c) 2007 Atheros Corporation. All rights reserved.
*
* Derived from Intel e1000 driver
* Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59
* Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* There are a lot of defines in here that are unused and/or have cryptic
* names. Please leave them alone, as they're the closest thing we have
* to a spec from Atheros at present. *ahem* -- CHS
*/
#include "at.h"
#ifdef SIOCGMIIPHY
#include <linux/mii.h>
#endif
#define LBYTESWAP( a ) ( ( ( (a) & 0x00ff00ff ) << 8 ) | ( ( (a) & 0xff00ff00 ) >> 8 ) )
#define LONGSWAP( a ) ( ( LBYTESWAP( a ) << 16 ) | ( LBYTESWAP( a ) >> 16 ) )
#define SHORTSWAP( a ) ( ( (a) << 8 ) | ( (a) >> 8 ) )
extern inline void at_irq_enable(struct at_adapter* adapter);
extern inline void at_irq_disable(struct at_adapter* adapter);
void at_init_pcie(struct at_hw *hw);
/*
* The little-endian AUTODIN II ethernet CRC calculations.
* A big-endian version is also available.
* This is slow but compact code. Do not use this routine
* for bulk data, use a table-based routine instead.
* This is common code and should be moved to net/core/crc.c.
* Chips may use the upper or lower CRC bits, and may reverse
* and/or invert them. Select the endian-ness that results
* in minimal calculations.
*/
u32
ether_crc_le(int length, unsigned char *data)
{
u32 crc = ~0; /* Initial value. */
while(--length >= 0) {
unsigned char current_octet = *data++;
int bit;
for (bit = 8; --bit >= 0; current_octet >>= 1) {
if ((crc ^ current_octet) & 1) {
crc >>= 1;
crc ^= 0xedb88320;
}
else
crc >>= 1;
}
}
return ~crc;
}
/********************************************************************
* Reset the transmit and receive units; mask and clear all interrupts.
*
* hw - Struct containing variables accessed by shared code
* return : AT_SUCCESS or idle status (if error)
********************************************************************/
s32
at_reset_hw(struct at_hw *hw)
{
u32 icr;
u16 pci_cfg_cmd_word;
int i;
DEBUGFUNC("at_reset_hw");
/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
at_read_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
if ((pci_cfg_cmd_word&
(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER))
!= (CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER)) {
pci_cfg_cmd_word |=
(CMD_IO_SPACE|CMD_MEMORY_SPACE|CMD_BUS_MASTER);
at_write_pci_cfg(hw, PCI_REG_COMMAND, &pci_cfg_cmd_word);
}
/* Clear Interrupt mask to stop board from generating
* interrupts & Clear any pending interrupt events
*/
// AT_WRITE_REG(hw, REG_IMR, 0);
// AT_WRITE_REG(hw, REG_ISR, 0xffffffff);
/* Issue Soft Reset to the MAC. This will reset the chip's
* transmit, receive, DMA. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
AT_WRITE_REG(hw, REG_MASTER_CTRL, MASTER_CTRL_LED_MODE|MASTER_CTRL_SOFT_RST);
wmb();
msec_delay(1); // delay about 1ms
/* Wait at least 10ms for All module to be Idle
*/
for (i=0; i < 10; i++)
{
icr = AT_READ_REG(hw, REG_IDLE_STATUS);
if (!icr)
break;
msec_delay(1); // delay 1 ms
cpu_relax();
}
if (icr)
{
DEBUGOUT("MAC state machine cann't be idle since disabled for 10ms second\n");
return icr;
}
return AT_SUCCESS;
}
/*********************************************************************
* Reads the adapter's MAC address from the EEPROM
*
* hw - Struct containing variables accessed by shared code
*********************************************************************/
s32
at_read_mac_addr(struct at_hw * hw)
{
u16 i;
DEBUGFUNC("at_read_mac_addr");
if (get_permanent_address(hw)) {
// for test
hw->perm_mac_addr[0] = 0x00;
hw->perm_mac_addr[1] = 0x13;
hw->perm_mac_addr[2] = 0x74;
hw->perm_mac_addr[3] = 0x00;
hw->perm_mac_addr[4] = 0x5c;
hw->perm_mac_addr[5] = 0x38;
}
for(i = 0; i < NODE_ADDRESS_SIZE; i++)
hw->mac_addr[i] = hw->perm_mac_addr[i];
return AT_SUCCESS;
}
/*********************************************************************
* Hashes an address to determine its location in the multicast table
*
* hw - Struct containing variables accessed by shared code
* mc_addr - the multicast address to hash
*********************************************************************/
/*
* at_hash_mc_addr
* purpose
* set hash value for a multicast address
* hash calcu processing :
* 1. calcu 32bit CRC for multicast address
* 2. reverse crc with MSB to LSB
*/
u32
at_hash_mc_addr(
struct at_hw *hw,
u8 *mc_addr)
{
u32 crc32, value=0;
int i;
crc32 = ether_crc_le(6, mc_addr);
crc32 = ~crc32;
for (i=0; i<32; i++)
{
value |= (((crc32>>i)&1)<<(31-i));
}
return value;
}
/********************************************************************
* Sets the bit in the multicast table corresponding to the hash value.
*
* hw - Struct containing variables accessed by shared code
* hash_value - Multicast address hash value
********************************************************************/
void
at_hash_set(
struct at_hw *hw,
u32 hash_value)
{
u32 hash_bit, hash_reg;
u32 mta;
/* The HASH Table is a register array of 2 32-bit registers.
* It is treated like an array of 64 bits. We want to set
* bit BitArray[hash_value]. So we figure out what register
* the bit is in, read it, OR in the new bit, then write
* back the new value. The register is determined by the
* upper 7 bits of the hash value and the bit within that
* register are determined by the lower 5 bits of the value.
*/
hash_reg = (hash_value >> 31) & 0x1;
hash_bit = (hash_value >> 26) & 0x1F;
mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
mta |= (1 << hash_bit);
AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
}
/*
* at_init_pcie - init PCIE module
*/
void at_init_pcie(struct at_hw *hw)
{
u32 value;
/* comment 2lines below to save more power when sususpend
value = LTSSM_TEST_MODE_DEF;
AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
*/
/* pcie flow control mode change */
value = AT_READ_REG(hw, 0x1008);
value |= 0x8000;
AT_WRITE_REG(hw, 0x1008, value);
}
/********************************************************************
* Performs basic configuration of the adapter.
*
* hw - Struct containing variables accessed by shared code
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes multicast table,
* and Calls routines to setup link
* Leaves the transmit and receive units disabled and uninitialized.
********************************************************************/
s32
at_init_hw(struct at_hw *hw)
{
s32 ret_val = 0;
DEBUGFUNC("at_init_hw");
at_init_pcie(hw);
/* Zero out the Multicast HASH table */
// DEBUGOUT("Zeroing the MTA");
/* clear the old settings from the multicast hash table */
AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
ret_val = at_phy_init(hw);
DEBUGOUT1("at_init_hw: ret: %d", ret_val);
return ret_val;
}
s32
at_restart_autoneg(struct at_hw *hw)
{
s32 ret_val;
ret_val = at_write_phy_reg(hw, MII_ADVERTISE,
hw->mii_autoneg_adv_reg);
if(ret_val)
return ret_val;
if (hw->nic_type == athr_l1e ||
hw->nic_type == athr_l2e_revA ) {
ret_val = at_write_phy_reg(hw,
MII_AT001_CR,
hw->mii_1000t_ctrl_reg);
}
ret_val = at_write_phy_reg(hw, MII_BMCR,
MII_CR_RESET|MII_CR_AUTO_NEG_EN|MII_CR_RESTART_AUTO_NEG);
return ret_val;
}
/******************************************************************************
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*****************************************************************************/
s32
at_get_speed_and_duplex(
struct at_hw *hw,
u16 *speed,
u16 *duplex)
{
s32 ret_val;
u16 phy_data;
DEBUGFUNC("at_get_speed_and_duplex");
// ; --- Read PHY Specific Status Register (17)
ret_val = at_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
if (ret_val)
return ret_val;
if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
return AT_ERR_PHY_RES;
switch(phy_data&MII_AT001_PSSR_SPEED) {
case MII_AT001_PSSR_1000MBS:
*speed = SPEED_1000;
DEBUGOUT("1000 Mbps");
break;
case MII_AT001_PSSR_100MBS:
*speed = SPEED_100;
DEBUGOUT("100 Mbs, ");
break;
case MII_AT001_PSSR_10MBS:
*speed = SPEED_10;
DEBUGOUT("10 Mbs, ");
break;
default:
DEBUGOUT("Error Speed !\n");
return AT_ERR_PHY_SPEED;
break;
}
if (phy_data & MII_AT001_PSSR_DPLX) {
*duplex = FULL_DUPLEX;
DEBUGOUT("Full Duplex");
} else {
*duplex = HALF_DUPLEX;
DEBUGOUT(" Half Duplex");
}
return AT_SUCCESS;
}
/*********************************************************************
* Reads the value from a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
*********************************************************************/
s32
at_read_phy_reg(
struct at_hw *hw,
u16 reg_addr,
u16 *phy_data)
{
u32 val;
int i;
DEBUGFUNC("at_read_phy_reg");
val = ((u32)(reg_addr&MDIO_REG_ADDR_MASK))
<< MDIO_REG_ADDR_SHIFT |
MDIO_START |
MDIO_SUP_PREAMBLE |
MDIO_RW |
MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
wmb();
for (i=0; i<MDIO_WAIT_TIMES; i++) {
usec_delay(2);
val = AT_READ_REG(hw, REG_MDIO_CTRL);
if (!(val&(MDIO_START|MDIO_BUSY))) {
break;
}
wmb();
}
if (!(val&(MDIO_START|MDIO_BUSY))) {
*phy_data = (u16)val;
return AT_SUCCESS;
}
return AT_ERR_PHY;
}
/********************************************************************
* Writes a value to a PHY register
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -