📄 pmac.c
字号:
*/static void __pmacpmac_ide_do_update_timings(ide_drive_t *drive){ pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; if (pmif == NULL) return; if (pmif->kind == controller_un_ata6 || pmif->kind == controller_k2_ata6) pmac_ide_kauai_selectproc(drive); else pmac_ide_selectproc(drive);}static voidpmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port){ u32 tmp; writeb(value, port); tmp = readl((unsigned *)(IDE_DATA_REG + IDE_TIMING_CONFIG));}/* * Send the SET_FEATURE IDE command to the drive and update drive->id with * the new state. We currently don't use the generic routine as it used to * cause various trouble, especially with older mediabays. * This code is sometimes triggering a spurrious interrupt though, I need * to sort that out sooner or later and see if I can finally get the * common version to work properly in all cases */static int __pmacpmac_ide_do_setfeature(ide_drive_t *drive, u8 command){ ide_hwif_t *hwif = HWIF(drive); int result = 1; disable_irq_nosync(hwif->irq); udelay(1); SELECT_DRIVE(drive); SELECT_MASK(drive, 0); udelay(1); /* Get rid of pending error state */ (void) hwif->INB(IDE_STATUS_REG); /* Timeout bumped for some powerbooks */ if (wait_for_ready(drive, 2000)) { /* Timeout bumped for some powerbooks */ printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready " "before SET_FEATURE!\n", drive->name); goto out; } udelay(10); hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG); hwif->OUTB(command, IDE_NSECTOR_REG); hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG); hwif->OUTBSYNC(drive, WIN_SETFEATURES, IDE_COMMAND_REG); udelay(1); /* Timeout bumped for some powerbooks */ result = wait_for_ready(drive, 2000); hwif->OUTB(drive->ctl, IDE_CONTROL_REG); if (result) printk(KERN_ERR "%s: pmac_ide_do_setfeature disk not ready " "after SET_FEATURE !\n", drive->name);out: SELECT_MASK(drive, 0); if (result == 0) { drive->id->dma_ultra &= ~0xFF00; drive->id->dma_mword &= ~0x0F00; drive->id->dma_1word &= ~0x0F00; switch(command) { case XFER_UDMA_7: drive->id->dma_ultra |= 0x8080; break; case XFER_UDMA_6: drive->id->dma_ultra |= 0x4040; break; case XFER_UDMA_5: drive->id->dma_ultra |= 0x2020; break; case XFER_UDMA_4: drive->id->dma_ultra |= 0x1010; break; case XFER_UDMA_3: drive->id->dma_ultra |= 0x0808; break; case XFER_UDMA_2: drive->id->dma_ultra |= 0x0404; break; case XFER_UDMA_1: drive->id->dma_ultra |= 0x0202; break; case XFER_UDMA_0: drive->id->dma_ultra |= 0x0101; break; case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break; case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break; case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break; case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break; case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break; case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break; default: break; } } enable_irq(hwif->irq); return result;}/* * Old tuning functions (called on hdparm -p), sets up drive PIO timings */static void __pmacpmac_ide_tuneproc(ide_drive_t *drive, u8 pio){ ide_pio_data_t d; u32 *timings; unsigned accessTicks, recTicks; unsigned accessTime, recTime; pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; if (pmif == NULL) return; /* which drive is it ? */ timings = &pmif->timings[drive->select.b.unit & 0x01]; pio = ide_get_best_pio_mode(drive, pio, 4, &d); switch (pmif->kind) { case controller_un_ata6: case controller_k2_ata6: { /* 100Mhz cell */ u32 tr = kauai_lookup_timing(kauai_pio_timings, d.cycle_time); if (tr == 0) return; *timings = ((*timings) & ~TR_100_PIOREG_PIO_MASK) | tr; break; } case controller_kl_ata4: /* 66Mhz cell */ recTime = d.cycle_time - ide_pio_timings[pio].active_time - ide_pio_timings[pio].setup_time; recTime = max(recTime, 150U); accessTime = ide_pio_timings[pio].active_time; accessTime = max(accessTime, 150U); accessTicks = SYSCLK_TICKS_66(accessTime); accessTicks = min(accessTicks, 0x1fU); recTicks = SYSCLK_TICKS_66(recTime); recTicks = min(recTicks, 0x1fU); *timings = ((*timings) & ~TR_66_PIO_MASK) | (accessTicks << TR_66_PIO_ACCESS_SHIFT) | (recTicks << TR_66_PIO_RECOVERY_SHIFT); break; default: { /* 33Mhz cell */ int ebit = 0; recTime = d.cycle_time - ide_pio_timings[pio].active_time - ide_pio_timings[pio].setup_time; recTime = max(recTime, 150U); accessTime = ide_pio_timings[pio].active_time; accessTime = max(accessTime, 150U); accessTicks = SYSCLK_TICKS(accessTime); accessTicks = min(accessTicks, 0x1fU); accessTicks = max(accessTicks, 4U); recTicks = SYSCLK_TICKS(recTime); recTicks = min(recTicks, 0x1fU); recTicks = max(recTicks, 5U) - 4; if (recTicks > 9) { recTicks--; /* guess, but it's only for PIO0, so... */ ebit = 1; } *timings = ((*timings) & ~TR_33_PIO_MASK) | (accessTicks << TR_33_PIO_ACCESS_SHIFT) | (recTicks << TR_33_PIO_RECOVERY_SHIFT); if (ebit) *timings |= TR_33_PIO_E; break; } }#ifdef IDE_PMAC_DEBUG printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n", drive->name, pio, *timings);#endif if (drive->select.all == HWIF(drive)->INB(IDE_SELECT_REG)) pmac_ide_do_update_timings(drive);}#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC/* * Calculate KeyLargo ATA/66 UDMA timings */static int __pmacset_timings_udma_ata4(u32 *timings, u8 speed){ unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks; if (speed > XFER_UDMA_4) return 1; rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause); wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup); addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup); *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) | (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) | (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) | (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) | TR_66_UDMA_EN;#ifdef IDE_PMAC_DEBUG printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n", speed & 0xf, *timings);#endif return 0;}/* * Calculate Kauai ATA/100 UDMA timings */static int __pmacset_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed){ struct ide_timing *t = ide_timing_find_mode(speed); u32 tr; if (speed > XFER_UDMA_5 || t == NULL) return 1; tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma); if (tr == 0) return 1; *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr; *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN; return 0;}/* * Calculate MDMA timings for all cells */static int __pmacset_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2, u8 speed, int drive_cycle_time){ int cycleTime, accessTime, recTime; unsigned accessTicks, recTicks; struct mdma_timings_t* tm = NULL; int i; /* Get default cycle time for mode */ switch(speed & 0xf) { case 0: cycleTime = 480; break; case 1: cycleTime = 150; break; case 2: cycleTime = 120; break; default: return 1; } /* Adjust for drive */ if (drive_cycle_time && drive_cycle_time > cycleTime) cycleTime = drive_cycle_time; /* OHare limits according to some old Apple sources */ if ((intf_type == controller_ohare) && (cycleTime < 150)) cycleTime = 150; /* Get the proper timing array for this controller */ switch(intf_type) { case controller_un_ata6: case controller_k2_ata6: break; case controller_kl_ata4: tm = mdma_timings_66; break; case controller_kl_ata3: tm = mdma_timings_33k; break; default: tm = mdma_timings_33; break; } if (tm != NULL) { /* Lookup matching access & recovery times */ i = -1; for (;;) { if (tm[i+1].cycleTime < cycleTime) break; i++; } if (i < 0) return 1; cycleTime = tm[i].cycleTime; accessTime = tm[i].accessTime; recTime = tm[i].recoveryTime;#ifdef IDE_PMAC_DEBUG printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n", drive->name, cycleTime, accessTime, recTime);#endif } switch(intf_type) { case controller_un_ata6: case controller_k2_ata6: { /* 100Mhz cell */ u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime); if (tr == 0) return 1; *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr; *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN; } break; case controller_kl_ata4: /* 66Mhz cell */ accessTicks = SYSCLK_TICKS_66(accessTime); accessTicks = min(accessTicks, 0x1fU); accessTicks = max(accessTicks, 0x1U); recTicks = SYSCLK_TICKS_66(recTime); recTicks = min(recTicks, 0x1fU); recTicks = max(recTicks, 0x3U); /* Clear out mdma bits and disable udma */ *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) | (accessTicks << TR_66_MDMA_ACCESS_SHIFT) | (recTicks << TR_66_MDMA_RECOVERY_SHIFT); break; case controller_kl_ata3: /* 33Mhz cell on KeyLargo */ accessTicks = SYSCLK_TICKS(accessTime); accessTicks = max(accessTicks, 1U); accessTicks = min(accessTicks, 0x1fU); accessTime = accessTicks * IDE_SYSCLK_NS; recTicks = SYSCLK_TICKS(recTime); recTicks = max(recTicks, 1U); recTicks = min(recTicks, 0x1fU); *timings = ((*timings) & ~TR_33_MDMA_MASK) | (accessTicks << TR_33_MDMA_ACCESS_SHIFT) | (recTicks << TR_33_MDMA_RECOVERY_SHIFT); break; default: { /* 33Mhz cell on others */ int halfTick = 0; int origAccessTime = accessTime; int origRecTime = recTime; accessTicks = SYSCLK_TICKS(accessTime); accessTicks = max(accessTicks, 1U); accessTicks = min(accessTicks, 0x1fU); accessTime = accessTicks * IDE_SYSCLK_NS; recTicks = SYSCLK_TICKS(recTime); recTicks = max(recTicks, 2U) - 1; recTicks = min(recTicks, 0x1fU); recTime = (recTicks + 1) * IDE_SYSCLK_NS; if ((accessTicks > 1) && ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) && ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) { halfTick = 1; accessTicks--; } *timings = ((*timings) & ~TR_33_MDMA_MASK) | (accessTicks << TR_33_MDMA_ACCESS_SHIFT) | (recTicks << TR_33_MDMA_RECOVERY_SHIFT); if (halfTick) *timings |= TR_33_MDMA_HALFTICK; } }#ifdef IDE_PMAC_DEBUG printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n", drive->name, speed & 0xf, *timings);#endif return 0;}#endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC *//* * Speedproc. This function is called by the core to set any of the standard * timing (PIO, MDMA or UDMA) to both the drive and the controller. * You may notice we don't use this function on normal "dma check" operation, * our dedicated function is more precise as it uses the drive provided * cycle time value. We should probably fix this one to deal with that too... */static int __pmacpmac_ide_tune_chipset (ide_drive_t *drive, byte speed){ int unit = (drive->select.b.unit & 0x01); int ret = 0; pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data; u32 *timings, *timings2; if (pmif == NULL) return 1; timings = &pmif->timings[unit]; timings2 = &pmif->timings[unit+2]; switch(speed) {#ifdef CONFIG_BLK_DEV_IDEDMA_PMAC case XFER_UDMA_5: if (pmif->kind != controller_un_ata6 && pmif->kind != controller_k2_ata6) return 1; case XFER_UDMA_4: case XFER_UDMA_3: if (HWIF(drive)->udma_four == 0) return 1; case XFER_UDMA_2: case XFER_UDMA_1: case XFER_UDMA_0: if (pmif->kind == controller_kl_ata4) ret = set_timings_udma_ata4(timings, speed); else if (pmif->kind == controller_un_ata6 || pmif->kind == controller_k2_ata6) ret = set_timings_udma_ata6(timings, timings2, speed); else ret = 1; break; case XFER_MW_DMA_2: case XFER_MW_DMA_1: case XFER_MW_DMA_0: ret = set_timings_mdma(drive, pmif->kind, timings, timings2, speed, 0); break; case XFER_SW_DMA_2: case XFER_SW_DMA_1: case XFER_SW_DMA_0: return 1;#endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */ case XFER_PIO_4: case XFER_PIO_3: case XFER_PIO_2: case XFER_PIO_1: case XFER_PIO_0: pmac_ide_tuneproc(drive, speed & 0x07); break; default: ret = 1; } if (ret) return ret; ret = pmac_ide_do_setfeature(drive, speed); if (ret) return ret; pmac_ide_do_update_timings(drive); drive->current_speed = speed; return 0;}/* * Blast some well known "safe" values to the timing registers at init or * wakeup from sleep time, before we do real calculation */static void __pmacsanitize_timings(pmac_ide_hwif_t *pmif){ unsigned int value, value2 = 0; switch(pmif->kind) { case controller_un_ata6: case controller_k2_ata6: value = 0x08618a92; value2 = 0x00002921; break; case controller_kl_ata4: value = 0x0008438c; break; case controller_kl_ata3: value = 0x00084526; break; case controller_heathrow: case controller_ohare: default: value = 0x00074526; break; } pmif->timings[0] = pmif->timings[1] = value; pmif->timings[2] = pmif->timings[3] = value2;}unsigned long __pmacpmac_ide_get_base(int index){ return pmac_ide[index].regbase;}int __pmacpmac_ide_check_base(unsigned long base){ int ix; for (ix = 0; ix < MAX_HWIFS; ++ix) if (base == pmac_ide[ix].regbase) return ix; return -1;}int __pmacpmac_ide_get_irq(unsigned long base){ int ix; for (ix = 0; ix < MAX_HWIFS; ++ix) if (base == pmac_ide[ix].regbase) return pmac_ide[ix].irq; return 0;}static int ide_majors[] __pmacdata = { 3, 22, 33, 34, 56, 57 };dev_t __initpmac_find_ide_boot(char *bootdevice, int n){ int i; /* * Look through the list of IDE interfaces for this one. */ for (i = 0; i < pmac_ide_count; ++i) { char *name; if (!pmac_ide[i].node || !pmac_ide[i].node->full_name) continue; name = pmac_ide[i].node->full_name; if (memcmp(name, bootdevice, n) == 0 && name[n] == 0) { /* XXX should cope with the 2nd drive as well... */ return MKDEV(ide_majors[i], 0); } } return 0;}/* Suspend call back, should be called after the child devices * have actually been suspended */static intpmac_ide_do_suspend(ide_hwif_t *hwif){ pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data; /* We clear the timings */ pmif->timings[0] = 0; pmif->timings[1] = 0; #ifdef CONFIG_BLK_DEV_IDE_PMAC_BLINK /* Note: This code will be called for every hwif, thus we'll * try several time to stop the LED blinker timer, but that * should be harmless */ if (pmu_ide_blink_enabled) { unsigned long flags; /* Make sure we don't hit the PMU blink */ spin_lock_irqsave(&pmu_blink_lock, flags); if (pmu_blink_ledstate)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -