📄 op-common.h
字号:
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ break; \ \ default: \ abort(); \ } \} while (0)/* * Main division routine. The input values should be cooked. */#define _FP_DIV(fs, wc, R, X, Y) \do { \ R##_s = X##_s ^ Y##_s; \ switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \ { \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \ R##_c = FP_CLS_NORMAL; \ R##_e = X##_e - Y##_e; \ \ _FP_DIV_MEAT_##fs(R,X,Y); \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \ _FP_CHOOSENAN(fs, wc, R, X, Y); \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \ R##_s = X##_s; \ _FP_FRAC_COPY_##wc(R, X); \ R##_c = X##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \ R##_s = Y##_s; \ _FP_FRAC_COPY_##wc(R, Y); \ R##_c = Y##_c; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \ R##_c = FP_CLS_ZERO; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \ R##_c = FP_CLS_INF; \ break; \ \ case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \ case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \ R##_c = FP_CLS_NAN; \ _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \ break; \ \ default: \ abort(); \ } \} while (0)/* * Main differential comparison routine. The inputs should be raw not * cooked. The return is -1,0,1 for normal values, 2 otherwise. */#define _FP_CMP(fs, wc, ret, X, Y, un) \ do { \ /* NANs are unordered */ \ if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \ || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \ { \ ret = un; \ } \ else \ { \ int __x_zero = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \ int __y_zero = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \ \ if (__x_zero && __y_zero) \ ret = 0; \ else if (__x_zero) \ ret = Y##_s ? 1 : -1; \ else if (__y_zero) \ ret = X##_s ? -1 : 1; \ else if (X##_s != Y##_s) \ ret = X##_s ? -1 : 1; \ else if (X##_e > Y##_e) \ ret = X##_s ? -1 : 1; \ else if (X##_e < Y##_e) \ ret = X##_s ? 1 : -1; \ else if (_FP_FRAC_GT_##wc(X, Y)) \ ret = X##_s ? -1 : 1; \ else if (_FP_FRAC_GT_##wc(Y, X)) \ ret = X##_s ? 1 : -1; \ else \ ret = 0; \ } \ } while (0)/* Simplification for strict equality. */#define _FP_CMP_EQ(fs, wc, ret, X, Y) \ do { \ /* NANs are unordered */ \ if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \ || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \ { \ ret = 1; \ } \ else \ { \ ret = !(X##_e == Y##_e \ && _FP_FRAC_EQ_##wc(X, Y) \ && (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \ } \ } while (0)/* * Main square root routine. The input value should be cooked. */#define _FP_SQRT(fs, wc, R, X) \do { \ _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \ _FP_W_TYPE q; \ switch (X##_c) \ { \ case FP_CLS_NAN: \ R##_s = 0; \ R##_c = FP_CLS_NAN; \ _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \ break; \ case FP_CLS_INF: \ if (X##_s) \ { \ R##_s = 0; \ R##_c = FP_CLS_NAN; /* sNAN */ \ } \ else \ { \ R##_s = 0; \ R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \ } \ break; \ case FP_CLS_ZERO: \ R##_s = X##_s; \ R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \ break; \ case FP_CLS_NORMAL: \ R##_s = 0; \ if (X##_s) \ { \ R##_c = FP_CLS_NAN; /* sNAN */ \ break; \ } \ R##_c = FP_CLS_NORMAL; \ if (X##_e & 1) \ _FP_FRAC_SLL_##wc(X, 1); \ R##_e = X##_e >> 1; \ _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \ _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \ q = _FP_OVERFLOW_##fs; \ _FP_FRAC_SLL_##wc(X, 1); \ _FP_SQRT_MEAT_##wc(R, S, T, X, q); \ _FP_FRAC_SRL_##wc(R, 1); \ } \ } while (0)/* * Convert from FP to integer *//* "When a NaN, infinity, large positive argument >= 2147483648.0, or * large negative argument <= -2147483649.0 is converted to an integer, * the invalid_current bit...should be set and fp_exception_IEEE_754 should * be raised. If the floating point invalid trap is disabled, no trap occurs * and a numerical result is generated: if the sign bit of the operand * is 0, the result is 2147483647; if the sign bit of the operand is 1, * the result is -2147483648." * Similarly for conversion to extended ints, except that the boundaries * are >= 2^63, <= -(2^63 + 1), and the results are 2^63 + 1 for s=0 and * -2^63 for s=1. * -- SPARC Architecture Manual V9, Appendix B, which specifies how * SPARCs resolve implementation dependencies in the IEEE-754 spec. * I don't believe that the code below follows this. I'm not even sure * it's right! * It doesn't cope with needing to convert to an n bit integer when there * is no n bit integer type. Fortunately gcc provides long long so this * isn't a problem for sparc32. * I have, however, fixed its NaN handling to conform as above. * -- PMM 02/1998 * NB: rsigned is not 'is r declared signed?' but 'should the value stored * in r be signed or unsigned?'. r is always(?) declared unsigned. * Comments below are mine, BTW -- PMM */#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \ do { \ switch (X##_c) \ { \ case FP_CLS_NORMAL: \ if (X##_e < 0) \ { \ /* case FP_CLS_NAN: see above! */ \ case FP_CLS_ZERO: \ r = 0; \ } \ else if (X##_e >= rsize - (rsigned != 0)) \ { /* overflow */ \ case FP_CLS_NAN: \ case FP_CLS_INF: \ if (rsigned) \ { \ r = 1; \ r <<= rsize - 1; \ r -= 1 - X##_s; \ } \ else \ { \ r = 0; \ if (!X##_s) \ r = ~r; \ } \ } \ else \ { \ if (_FP_W_TYPE_SIZE*wc < rsize) \ { \ _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ r <<= X##_e - _FP_WFRACBITS_##fs; \ } \ else \ { \ if (X##_e >= _FP_WFRACBITS_##fs) \ _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));\ else \ _FP_FRAC_SRL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));\ _FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \ } \ if (rsigned && X##_s) \ r = -r; \ } \ break; \ } \ } while (0)#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \ do { \ if (r) \ { \ X##_c = FP_CLS_NORMAL; \ \ if ((X##_s = (r < 0))) \ r = -r; \ /* Note that `r' is now considered unsigned, so we don't have \ to worry about the single signed overflow case. */ \ \ if (rsize <= _FP_W_TYPE_SIZE) \ __FP_CLZ(X##_e, r); \ else \ __FP_CLZ_2(X##_e, (_FP_W_TYPE)(r >> _FP_W_TYPE_SIZE), \ (_FP_W_TYPE)r); \ if (rsize < _FP_W_TYPE_SIZE) \ X##_e -= (_FP_W_TYPE_SIZE - rsize); \ X##_e = rsize - X##_e - 1; \ \ if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e) \ __FP_FRAC_SRS_1(r, (X##_e - _FP_WFRACBITS_##fs), rsize); \ r &= ~((_FP_W_TYPE)1 << X##_e); \ _FP_FRAC_DISASSEMBLE_##wc(X, ((unsigned rtype)r), rsize); \ _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \ } \ else \ { \ X##_c = FP_CLS_ZERO, X##_s = 0; \ } \ } while (0)#define FP_CONV(dfs,sfs,dwc,swc,D,S) \ do { \ _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \ D##_e = S##_e; \ D##_c = S##_c; \ D##_s = S##_s; \ } while (0)/* * Helper primitives. *//* Count leading zeros in a word. */#ifndef __FP_CLZ#if _FP_W_TYPE_SIZE < 64/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */#define __FP_CLZ(r, x) \ do { \ _FP_W_TYPE _t = (x); \ r = _FP_W_TYPE_SIZE - 1; \ if (_t > 0xffff) r -= 16; \ if (_t > 0xffff) _t >>= 16; \ if (_t > 0xff) r -= 8; \ if (_t > 0xff) _t >>= 8; \ if (_t & 0xf0) r -= 4; \ if (_t & 0xf0) _t >>= 4; \ if (_t & 0xc) r -= 2; \ if (_t & 0xc) _t >>= 2; \ if (_t & 0x2) r -= 1; \ } while (0)#else /* not _FP_W_TYPE_SIZE < 64 */#define __FP_CLZ(r, x) \ do { \ _FP_W_TYPE _t = (x); \ r = _FP_W_TYPE_SIZE - 1; \ if (_t > 0xffffffff) r -= 32; \ if (_t > 0xffffffff) _t >>= 32; \ if (_t > 0xffff) r -= 16; \ if (_t > 0xffff) _t >>= 16; \ if (_t > 0xff) r -= 8; \ if (_t > 0xff) _t >>= 8; \ if (_t & 0xf0) r -= 4; \ if (_t & 0xf0) _t >>= 4; \ if (_t & 0xc) r -= 2; \ if (_t & 0xc) _t >>= 2; \ if (_t & 0x2) r -= 1; \ } while (0)#endif /* not _FP_W_TYPE_SIZE < 64 */#endif /* ndef __FP_CLZ */#define _FP_DIV_HELP_imm(q, r, n, d) \ do { \ q = n / d, r = n % d; \ } while (0)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -