⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 op-common.h

📁 优龙2410linux2.6.8内核源代码
💻 H
📖 第 1 页 / 共 2 页
字号:
    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\    break;						\							\  default:						\    abort();						\  }							\} while (0)/* * Main division routine.  The input values should be cooked. */#define _FP_DIV(fs, wc, R, X, Y)			\do {							\  R##_s = X##_s ^ Y##_s;				\  switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\  {							\  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\    R##_c = FP_CLS_NORMAL;				\    R##_e = X##_e - Y##_e;				\							\    _FP_DIV_MEAT_##fs(R,X,Y);				\    break;						\							\  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\    _FP_CHOOSENAN(fs, wc, R, X, Y);			\    break;						\							\  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\  case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\    R##_s = X##_s;					\    _FP_FRAC_COPY_##wc(R, X);				\    R##_c = X##_c;					\    break;						\							\  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\    R##_s = Y##_s;					\    _FP_FRAC_COPY_##wc(R, Y);				\    R##_c = Y##_c;					\    break;						\							\  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\    R##_c = FP_CLS_ZERO;				\    break;						\							\  case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\    R##_c = FP_CLS_INF;					\    break;						\							\  case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\  case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\    R##_c = FP_CLS_NAN;					\    _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\    break;						\							\  default:						\    abort();						\  }							\} while (0)/* * Main differential comparison routine.  The inputs should be raw not * cooked.  The return is -1,0,1 for normal values, 2 otherwise. */#define _FP_CMP(fs, wc, ret, X, Y, un)					\  do {									\    /* NANs are unordered */						\    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		\	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	\      {									\	ret = un;							\      }									\    else								\      {									\        int __x_zero = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0;	\        int __y_zero = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0;	\									\	if (__x_zero && __y_zero)					\	  ret = 0;							\	else if (__x_zero)						\	  ret = Y##_s ? 1 : -1;						\	else if (__y_zero)						\	  ret = X##_s ? -1 : 1;						\	else if (X##_s != Y##_s)					\	  ret = X##_s ? -1 : 1;						\	else if (X##_e > Y##_e)						\	  ret = X##_s ? -1 : 1;						\	else if (X##_e < Y##_e)						\	  ret = X##_s ? 1 : -1;						\	else if (_FP_FRAC_GT_##wc(X, Y))				\	  ret = X##_s ? -1 : 1;						\	else if (_FP_FRAC_GT_##wc(Y, X))				\	  ret = X##_s ? 1 : -1;						\	else								\	  ret = 0;							\      }									\  } while (0)/* Simplification for strict equality.  */#define _FP_CMP_EQ(fs, wc, ret, X, Y)					  \  do {									  \    /* NANs are unordered */						  \    if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		  \	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	  \      {									  \	ret = 1;							  \      }									  \    else								  \      {									  \	ret = !(X##_e == Y##_e						  \		&& _FP_FRAC_EQ_##wc(X, Y)				  \		&& (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \      }									  \  } while (0)/* * Main square root routine.  The input value should be cooked. */#define _FP_SQRT(fs, wc, R, X)						\do {									\    _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S);			\    _FP_W_TYPE q;							\    switch (X##_c)							\    {									\    case FP_CLS_NAN:							\    	R##_s = 0;							\    	R##_c = FP_CLS_NAN;						\    	_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\    	break;								\    case FP_CLS_INF:							\    	if (X##_s)							\    	  {								\    	    R##_s = 0;							\	    R##_c = FP_CLS_NAN; /* sNAN */				\    	  }								\    	else								\    	  {								\    	    R##_s = 0;							\    	    R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */			\    	  }								\    	break;								\    case FP_CLS_ZERO:							\	R##_s = X##_s;							\    	R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */			\	break;								\    case FP_CLS_NORMAL:							\    	R##_s = 0;							\        if (X##_s)							\          {								\	    R##_c = FP_CLS_NAN; /* sNAN */				\	    break;							\          }								\    	R##_c = FP_CLS_NORMAL;						\        if (X##_e & 1)							\          _FP_FRAC_SLL_##wc(X, 1);					\        R##_e = X##_e >> 1;						\        _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc);			\        _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc);			\        q = _FP_OVERFLOW_##fs;						\        _FP_FRAC_SLL_##wc(X, 1);					\        _FP_SQRT_MEAT_##wc(R, S, T, X, q);				\        _FP_FRAC_SRL_##wc(R, 1);					\    }									\  } while (0)/* * Convert from FP to integer *//* "When a NaN, infinity, large positive argument >= 2147483648.0, or * large negative argument <= -2147483649.0 is converted to an integer, * the invalid_current bit...should be set and fp_exception_IEEE_754 should * be raised. If the floating point invalid trap is disabled, no trap occurs * and a numerical result is generated: if the sign bit of the operand * is 0, the result is 2147483647; if the sign bit of the operand is 1, * the result is -2147483648." * Similarly for conversion to extended ints, except that the boundaries * are >= 2^63, <= -(2^63 + 1), and the results are 2^63 + 1 for s=0 and * -2^63 for s=1. * -- SPARC Architecture Manual V9, Appendix B, which specifies how * SPARCs resolve implementation dependencies in the IEEE-754 spec. * I don't believe that the code below follows this. I'm not even sure * it's right! * It doesn't cope with needing to convert to an n bit integer when there * is no n bit integer type. Fortunately gcc provides long long so this * isn't a problem for sparc32. * I have, however, fixed its NaN handling to conform as above. *         -- PMM 02/1998 * NB: rsigned is not 'is r declared signed?' but 'should the value stored * in r be signed or unsigned?'. r is always(?) declared unsigned. * Comments below are mine, BTW -- PMM */#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned)			\  do {									\    switch (X##_c)							\      {									\      case FP_CLS_NORMAL:						\	if (X##_e < 0)							\	  {								\	  /* case FP_CLS_NAN: see above! */				\	  case FP_CLS_ZERO:						\	    r = 0;							\	  }								\	else if (X##_e >= rsize - (rsigned != 0))			\	  {	/* overflow */						\	  case FP_CLS_NAN:                                              \          case FP_CLS_INF:						\	    if (rsigned)						\	      {								\		r = 1;							\		r <<= rsize - 1;					\		r -= 1 - X##_s;						\	      }								\	    else							\	      {								\		r = 0;							\		if (!X##_s)						\		  r = ~r;						\	      }								\	  }								\	else								\	  {								\	    if (_FP_W_TYPE_SIZE*wc < rsize)				\	      {								\		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\		r <<= X##_e - _FP_WFRACBITS_##fs;			\	      }								\	    else							\	      {								\		if (X##_e >= _FP_WFRACBITS_##fs)			\		  _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));\		else							\		  _FP_FRAC_SRL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));\		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\	      }								\	    if (rsigned && X##_s)					\	      r = -r;							\	  }								\	break;								\      }									\  } while (0)#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype)			\  do {									\    if (r)								\      {									\	X##_c = FP_CLS_NORMAL;						\									\	if ((X##_s = (r < 0)))						\	  r = -r;							\	/* Note that `r' is now considered unsigned, so we don't have	\	   to worry about the single signed overflow case.  */		\									\	if (rsize <= _FP_W_TYPE_SIZE)					\	  __FP_CLZ(X##_e, r);						\	else								\	  __FP_CLZ_2(X##_e, (_FP_W_TYPE)(r >> _FP_W_TYPE_SIZE), 	\		     (_FP_W_TYPE)r);					\	if (rsize < _FP_W_TYPE_SIZE)					\		X##_e -= (_FP_W_TYPE_SIZE - rsize);			\	X##_e = rsize - X##_e - 1;					\									\	if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e)	\	  __FP_FRAC_SRS_1(r, (X##_e - _FP_WFRACBITS_##fs), rsize);	\	r &= ~((_FP_W_TYPE)1 << X##_e);					\	_FP_FRAC_DISASSEMBLE_##wc(X, ((unsigned rtype)r), rsize);	\	_FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));		\      }									\    else								\      {									\	X##_c = FP_CLS_ZERO, X##_s = 0;					\      }									\  } while (0)#define FP_CONV(dfs,sfs,dwc,swc,D,S)			\  do {							\    _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S);	\    D##_e = S##_e;					\    D##_c = S##_c;					\    D##_s = S##_s;					\  } while (0)/* * Helper primitives. *//* Count leading zeros in a word.  */#ifndef __FP_CLZ#if _FP_W_TYPE_SIZE < 64/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */#define __FP_CLZ(r, x)				\  do {						\    _FP_W_TYPE _t = (x);			\    r = _FP_W_TYPE_SIZE - 1;			\    if (_t > 0xffff) r -= 16;			\    if (_t > 0xffff) _t >>= 16;			\    if (_t > 0xff) r -= 8;			\    if (_t > 0xff) _t >>= 8;			\    if (_t & 0xf0) r -= 4;			\    if (_t & 0xf0) _t >>= 4;			\    if (_t & 0xc) r -= 2;			\    if (_t & 0xc) _t >>= 2;			\    if (_t & 0x2) r -= 1;			\  } while (0)#else /* not _FP_W_TYPE_SIZE < 64 */#define __FP_CLZ(r, x)				\  do {						\    _FP_W_TYPE _t = (x);			\    r = _FP_W_TYPE_SIZE - 1;			\    if (_t > 0xffffffff) r -= 32;		\    if (_t > 0xffffffff) _t >>= 32;		\    if (_t > 0xffff) r -= 16;			\    if (_t > 0xffff) _t >>= 16;			\    if (_t > 0xff) r -= 8;			\    if (_t > 0xff) _t >>= 8;			\    if (_t & 0xf0) r -= 4;			\    if (_t & 0xf0) _t >>= 4;			\    if (_t & 0xc) r -= 2;			\    if (_t & 0xc) _t >>= 2;			\    if (_t & 0x2) r -= 1;			\  } while (0)#endif /* not _FP_W_TYPE_SIZE < 64 */#endif /* ndef __FP_CLZ */#define _FP_DIV_HELP_imm(q, r, n, d)		\  do {						\    q = n / d, r = n % d;			\  } while (0)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -