📄 ide.c
字号:
/* initiate a multi word read */ *R_ATA_TRANSFER_CNT = wcount << 1; *R_ATA_CTRL_DATA = data_reg | IO_STATE(R_ATA_CTRL_DATA, rw, read) | IO_STATE(R_ATA_CTRL_DATA, src_dst, register) | IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | IO_STATE(R_ATA_CTRL_DATA, multi, on) | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); /* svinto has a latency until the busy bit actually is set */ nop(); nop(); nop(); nop(); nop(); nop(); nop(); nop(); nop(); nop(); /* unit should be busy during multi transfer */ while((status = *R_ATA_STATUS_DATA) & IO_MASK(R_ATA_STATUS_DATA, busy)) { while(!(status & IO_MASK(R_ATA_STATUS_DATA, dav))) status = *R_ATA_STATUS_DATA; *ptr++ = (unsigned short)(status & 0xffff); }#endif}static voide100_atapi_output_bytes (ide_drive_t *drive, void *buffer, unsigned int bytecount){ ide_ioreg_t data_reg = IDE_DATA_REG; D(printk("atapi_output_bytes, dreg 0x%x, buffer 0x%x, count %d\n", data_reg, buffer, bytecount)); if(bytecount & 1) { printk("odd bytecount %d in atapi_out_bytes!\n", bytecount); bytecount++; } /* make sure the DMA channel is available */ RESET_DMA(ATA_TX_DMA_NBR); WAIT_DMA(ATA_TX_DMA_NBR); /* setup DMA descriptor */ mydescr.sw_len = bytecount; mydescr.ctrl = d_eol; mydescr.buf = virt_to_phys(buffer); /* start the dma channel */ *R_DMA_CH2_FIRST = virt_to_phys(&mydescr); *R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start); /* initiate a multi word dma write using PIO handshaking */ *R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, bytecount >> 1); *R_ATA_CTRL_DATA = data_reg | IO_STATE(R_ATA_CTRL_DATA, rw, write) | IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | IO_STATE(R_ATA_CTRL_DATA, multi, on) | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); /* wait for completion */ LED_DISK_WRITE(1); WAIT_DMA(ATA_TX_DMA_NBR); LED_DISK_WRITE(0);#if 0 /* old polled write code - see comment in input_bytes */ /* wait for busy flag */ while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); /* initiate a multi word write */ *R_ATA_TRANSFER_CNT = bytecount >> 1; ctrl = data_reg | IO_STATE(R_ATA_CTRL_DATA, rw, write) | IO_STATE(R_ATA_CTRL_DATA, src_dst, register) | IO_STATE(R_ATA_CTRL_DATA, handsh, pio) | IO_STATE(R_ATA_CTRL_DATA, multi, on) | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); LED_DISK_WRITE(1); /* Etrax will set busy = 1 until the multi pio transfer has finished * and tr_rdy = 1 after each successful word transfer. * When the last byte has been transferred Etrax will first set tr_tdy = 1 * and then busy = 0 (not in the same cycle). If we read busy before it * has been set to 0 we will think that we should transfer more bytes * and then tr_rdy would be 0 forever. This is solved by checking busy * in the inner loop. */ do { *R_ATA_CTRL_DATA = ctrl | *ptr++; while(!(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, tr_rdy)) && (*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy))); } while(*R_ATA_STATUS_DATA & IO_MASK(R_ATA_STATUS_DATA, busy)); LED_DISK_WRITE(0);#endif}/* * This is used for most PIO data transfers *from* the IDE interface */static voide100_ide_input_data (ide_drive_t *drive, void *buffer, unsigned int wcount){ e100_atapi_input_bytes(drive, buffer, wcount << 2);}/* * This is used for most PIO data transfers *to* the IDE interface */static voide100_ide_output_data (ide_drive_t *drive, void *buffer, unsigned int wcount){ e100_atapi_output_bytes(drive, buffer, wcount << 2);}/* we only have one DMA channel on the chip for ATA, so we can keep these statically */static etrax_dma_descr ata_descrs[MAX_DMA_DESCRS];static unsigned int ata_tot_size;/* * e100_ide_build_dmatable() prepares a dma request. * Returns 0 if all went okay, returns 1 otherwise. */static int e100_ide_build_dmatable (ide_drive_t *drive){ ide_hwif_t *hwif = HWIF(drive); struct scatterlist* sg; struct request *rq = HWGROUP(drive)->rq; unsigned long size, addr; unsigned int count = 0; int i = 0; sg = hwif->sg_table; ata_tot_size = 0; if (HWGROUP(drive)->rq->flags & REQ_DRIVE_TASKFILE) { u8 *virt_addr = rq->buffer; int sector_count = rq->nr_sectors; memset(&sg[0], 0, sizeof(*sg)); sg[0].page = virt_to_page(virt_addr); sg[0].offset = offset_in_page(virt_addr); sg[0].length = sector_count * SECTOR_SIZE; hwif->sg_nents = i = 1; } else { hwif->sg_nents = i = blk_rq_map_sg(drive->queue, rq, hwif->sg_table); } while(i) { /* * Determine addr and size of next buffer area. We assume that * individual virtual buffers are always composed linearly in * physical memory. For example, we assume that any 8kB buffer * is always composed of two adjacent physical 4kB pages rather * than two possibly non-adjacent physical 4kB pages. */ /* group sequential buffers into one large buffer */ addr = page_to_phys(sg->page) + sg->offset; size = sg_dma_len(sg); while (sg++, --i) { if ((addr + size) != page_to_phys(sg->page) + sg->offset) break; size += sg_dma_len(sg); } /* did we run out of descriptors? */ if(count >= MAX_DMA_DESCRS) { printk("%s: too few DMA descriptors\n", drive->name); return 1; } /* however, this case is more difficult - R_ATA_TRANSFER_CNT cannot be more than 65536 words per transfer, so in that case we need to either 1) use a DMA interrupt to re-trigger R_ATA_TRANSFER_CNT and continue with the descriptors, or 2) simply do the request here, and get dma_intr to only ide_end_request on those blocks that were actually set-up for transfer. */ if(ata_tot_size + size > 131072) { printk("too large total ATA DMA request, %d + %d!\n", ata_tot_size, (int)size); return 1; } /* If size > 65536 it has to be splitted into new descriptors. Since we don't handle size > 131072 only one split is necessary */ if(size > 65536) { /* ok we want to do IO at addr, size bytes. set up a new descriptor entry */ ata_descrs[count].sw_len = 0; /* 0 means 65536, this is a 16-bit field */ ata_descrs[count].ctrl = 0; ata_descrs[count].buf = addr; ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]); count++; ata_tot_size += 65536; /* size and addr should refere to not handled data */ size -= 65536; addr += 65536; } /* ok we want to do IO at addr, size bytes. set up a new descriptor entry */ if(size == 65536) { ata_descrs[count].sw_len = 0; /* 0 means 65536, this is a 16-bit field */ } else { ata_descrs[count].sw_len = size; } ata_descrs[count].ctrl = 0; ata_descrs[count].buf = addr; ata_descrs[count].next = virt_to_phys(&ata_descrs[count + 1]); count++; ata_tot_size += size; } if (count) { /* set the end-of-list flag on the last descriptor */ ata_descrs[count - 1].ctrl |= d_eol; /* return and say all is ok */ return 0; } printk("%s: empty DMA table?\n", drive->name); return 1; /* let the PIO routines handle this weirdness */}static int config_drive_for_dma (ide_drive_t *drive){ const char **list; struct hd_driveid *id = drive->id; if (id && (id->capability & 1)) { /* Enable DMA on any drive that supports mword2 DMA */ if ((id->field_valid & 2) && (id->dma_mword & 0x404) == 0x404) { drive->using_dma = 1; return 0; /* DMA enabled */ } /* Consult the list of known "good" drives */ list = good_dma_drives; while (*list) { if (!strcmp(*list++,id->model)) { drive->using_dma = 1; return 0; /* DMA enabled */ } } } return 1; /* DMA not enabled */}/* * etrax_dma_intr() is the handler for disk read/write DMA interrupts */static ide_startstop_t etrax_dma_intr (ide_drive_t *drive){ int i, dma_stat; byte stat; LED_DISK_READ(0); LED_DISK_WRITE(0); dma_stat = HWIF(drive)->ide_dma_end(drive); stat = HWIF(drive)->INB(IDE_STATUS_REG); /* get drive status */ if (OK_STAT(stat,DRIVE_READY,drive->bad_wstat|DRQ_STAT)) { if (!dma_stat) { struct request *rq; rq = HWGROUP(drive)->rq; for (i = rq->nr_sectors; i > 0;) { i -= rq->current_nr_sectors; DRIVER(drive)->end_request(drive, 1, rq->nr_sectors); } return ide_stopped; } printk("%s: bad DMA status\n", drive->name); } return DRIVER(drive)->error(drive, "dma_intr", stat);}/* * Functions below initiates/aborts DMA read/write operations on a drive. * * The caller is assumed to have selected the drive and programmed the drive's * sector address using CHS or LBA. All that remains is to prepare for DMA * and then issue the actual read/write DMA/PIO command to the drive. * * For ATAPI devices, we just prepare for DMA and return. The caller should * then issue the packet command to the drive and call us again with * ide_dma_begin afterwards. * * Returns 0 if all went well. * Returns 1 if DMA read/write could not be started, in which case * the caller should revert to PIO for the current request. */static int e100_dma_check(ide_drive_t *drive){ return config_drive_for_dma (drive);}static int e100_dma_end(ide_drive_t *drive){ /* TODO: check if something went wrong with the DMA */ return 0;}static int e100_start_dma(ide_drive_t *drive, int atapi, int reading){ if(reading) { RESET_DMA(ATA_RX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */ WAIT_DMA(ATA_RX_DMA_NBR); /* set up the Etrax DMA descriptors */ if(e100_ide_build_dmatable (drive)) return 1; if(!atapi) { /* set the irq handler which will finish the request when DMA is done */ ide_set_handler(drive, &etrax_dma_intr, WAIT_CMD, NULL); /* issue cmd to drive */ if ((HWGROUP(drive)->rq->cmd == IDE_DRIVE_TASKFILE) && (drive->addressing == 1)) { ide_task_t *args = HWGROUP(drive)->rq->special; etrax100_ide_outb(args->tfRegister[IDE_COMMAND_OFFSET], IDE_COMMAND_REG); } else if (drive->addressing) { etrax100_ide_outb(WIN_READDMA_EXT, IDE_COMMAND_REG); } else { etrax100_ide_outb(WIN_READDMA, IDE_COMMAND_REG); } } /* begin DMA */ /* need to do this before RX DMA due to a chip bug * it is enough to just flush the part of the cache that * corresponds to the buffers we start, but since HD transfers * usually are more than 8 kB, it is easier to optimize for the * normal case and just flush the entire cache. its the only * way to be sure! (OB movie quote) */ flush_etrax_cache(); *R_DMA_CH3_FIRST = virt_to_phys(ata_descrs); *R_DMA_CH3_CMD = IO_STATE(R_DMA_CH3_CMD, cmd, start); /* initiate a multi word dma read using DMA handshaking */ *R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1); *R_ATA_CTRL_DATA = IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) | IO_STATE(R_ATA_CTRL_DATA, rw, read) | IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | IO_STATE(R_ATA_CTRL_DATA, handsh, dma) | IO_STATE(R_ATA_CTRL_DATA, multi, on) | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); LED_DISK_READ(1); D(printk("dma read of %d bytes.\n", ata_tot_size)); } else { /* writing */ RESET_DMA(ATA_TX_DMA_NBR); /* sometimes the DMA channel get stuck so we need to do this */ WAIT_DMA(ATA_TX_DMA_NBR); /* set up the Etrax DMA descriptors */ if(e100_ide_build_dmatable (drive)) return 1; if(!atapi) { /* set the irq handler which will finish the request when DMA is done */ ide_set_handler(drive, &etrax_dma_intr, WAIT_CMD, NULL); /* issue cmd to drive */ if ((HWGROUP(drive)->rq->cmd == IDE_DRIVE_TASKFILE) && (drive->addressing == 1)) { ide_task_t *args = HWGROUP(drive)->rq->special; etrax100_ide_outb(args->tfRegister[IDE_COMMAND_OFFSET], IDE_COMMAND_REG); } else if (drive->addressing) { etrax100_ide_outb(WIN_WRITEDMA_EXT, IDE_COMMAND_REG); } else { etrax100_ide_outb(WIN_WRITEDMA, IDE_COMMAND_REG); } } /* begin DMA */ *R_DMA_CH2_FIRST = virt_to_phys(ata_descrs); *R_DMA_CH2_CMD = IO_STATE(R_DMA_CH2_CMD, cmd, start); /* initiate a multi word dma write using DMA handshaking */ *R_ATA_TRANSFER_CNT = IO_FIELD(R_ATA_TRANSFER_CNT, count, ata_tot_size >> 1); *R_ATA_CTRL_DATA = IO_FIELD(R_ATA_CTRL_DATA, data, IDE_DATA_REG) | IO_STATE(R_ATA_CTRL_DATA, rw, write) | IO_STATE(R_ATA_CTRL_DATA, src_dst, dma) | IO_STATE(R_ATA_CTRL_DATA, handsh, dma) | IO_STATE(R_ATA_CTRL_DATA, multi, on) | IO_STATE(R_ATA_CTRL_DATA, dma_size, word); LED_DISK_WRITE(1); D(printk("dma write of %d bytes.\n", ata_tot_size)); } return 0;}static int e100_dma_write(ide_drive_t *drive){ e100_read_command = 0; /* ATAPI-devices (not disks) first call ide_dma_read/write to set the direction * then they call ide_dma_begin after they have issued the appropriate drive command * themselves to actually start the chipset DMA. so we just return here if we're * not a diskdrive. */ if (drive->media != ide_disk) return 0; return e100_start_dma(drive, 0, 0);}static int e100_dma_read(ide_drive_t *drive){ e100_read_command = 1; /* ATAPI-devices (not disks) first call ide_dma_read/write to set the direction * then they call ide_dma_begin after they have issued the appropriate drive command * themselves to actually start the chipset DMA. so we just return here if we're * not a diskdrive. */ if (drive->media != ide_disk) return 0; return e100_start_dma(drive, 0, 1);}static int e100_dma_begin(ide_drive_t *drive){ /* begin DMA, used by ATAPI devices which want to issue the * appropriate IDE command themselves. * * they have already called ide_dma_read/write to set the * static reading flag, now they call ide_dma_begin to do * the real stuff. we tell our code below not to issue * any IDE commands itself and jump into it. */ return e100_start_dma(drive, 1, e100_read_command);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -