⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 urem.s

📁 优龙2410linux2.6.8内核源代码
💻 S
字号:
/* $Id: urem.S,v 1.4 1996/09/30 02:22:42 davem Exp $ * urem.S:      This routine was taken from glibc-1.09 and is covered *              by the GNU Library General Public License Version 2. *//* This file is generated from divrem.m4; DO NOT EDIT! *//* * Division and remainder, from Appendix E of the Sparc Version 8 * Architecture Manual, with fixes from Gordon Irlam. *//* * Input: dividend and divisor in %o0 and %o1 respectively. * * m4 parameters: *  .urem	name of function to generate *  rem		rem=div => %o0 / %o1; rem=rem => %o0 % %o1 *  false		false=true => signed; false=false => unsigned * * Algorithm parameters: *  N		how many bits per iteration we try to get (4) *  WORDSIZE	total number of bits (32) * * Derived constants: *  TOPBITS	number of bits in the top decade of a number * * Important variables: *  Q		the partial quotient under development (initially 0) *  R		the remainder so far, initially the dividend *  ITER	number of main division loop iterations required; *		equal to ceil(log2(quotient) / N).  Note that this *		is the log base (2^N) of the quotient. *  V		the current comparand, initially divisor*2^(ITER*N-1) * * Cost: *  Current estimate for non-large dividend is *	ceil(log2(quotient) / N) * (10 + 7N/2) + C *  A large dividend is one greater than 2^(31-TOPBITS) and takes a *  different path, as the upper bits of the quotient must be developed *  one bit at a time. */	.globl .urem.urem:	! Ready to divide.  Compute size of quotient; scale comparand.	orcc	%o1, %g0, %o5	bne	1f	 mov	%o0, %o3		! Divide by zero trap.  If it returns, return 0 (about as		! wrong as possible, but that is what SunOS does...).		ta	ST_DIV0		retl		 clr	%o01:	cmp	%o3, %o5			! if %o1 exceeds %o0, done	blu	Lgot_result		! (and algorithm fails otherwise)	 clr	%o2	sethi	%hi(1 << (32 - 4 - 1)), %g1	cmp	%o3, %g1	blu	Lnot_really_big	 clr	%o4	! Here the dividend is >= 2**(31-N) or so.  We must be careful here,	! as our usual N-at-a-shot divide step will cause overflow and havoc.	! The number of bits in the result here is N*ITER+SC, where SC <= N.	! Compute ITER in an unorthodox manner: know we need to shift V into	! the top decade: so do not even bother to compare to R.	1:		cmp	%o5, %g1		bgeu	3f		 mov	1, %g7		sll	%o5, 4, %o5		b	1b		 add	%o4, 1, %o4	! Now compute %g7.	2:		addcc	%o5, %o5, %o5		bcc	Lnot_too_big		 add	%g7, 1, %g7		! We get here if the %o1 overflowed while shifting.		! This means that %o3 has the high-order bit set.		! Restore %o5 and subtract from %o3.		sll	%g1, 4, %g1	! high order bit		srl	%o5, 1, %o5		! rest of %o5		add	%o5, %g1, %o5		b	Ldo_single_div		 sub	%g7, 1, %g7	Lnot_too_big:	3:		cmp	%o5, %o3		blu	2b		 nop		be	Ldo_single_div		 nop	/* NB: these are commented out in the V8-Sparc manual as well */	/* (I do not understand this) */	! %o5 > %o3: went too far: back up 1 step	!	srl	%o5, 1, %o5	!	dec	%g7	! do single-bit divide steps	!	! We have to be careful here.  We know that %o3 >= %o5, so we can do the	! first divide step without thinking.  BUT, the others are conditional,	! and are only done if %o3 >= 0.  Because both %o3 and %o5 may have the high-	! order bit set in the first step, just falling into the regular	! division loop will mess up the first time around.	! So we unroll slightly...	Ldo_single_div:		subcc	%g7, 1, %g7		bl	Lend_regular_divide		 nop		sub	%o3, %o5, %o3		mov	1, %o2		b	Lend_single_divloop		 nop	Lsingle_divloop:		sll	%o2, 1, %o2		bl	1f		 srl	%o5, 1, %o5		! %o3 >= 0		sub	%o3, %o5, %o3		b	2f		 add	%o2, 1, %o2	1:	! %o3 < 0		add	%o3, %o5, %o3		sub	%o2, 1, %o2	2:	Lend_single_divloop:		subcc	%g7, 1, %g7		bge	Lsingle_divloop		 tst	%o3		b,a	Lend_regular_divideLnot_really_big:1:	sll	%o5, 4, %o5	cmp	%o5, %o3	bleu	1b	 addcc	%o4, 1, %o4	be	Lgot_result	 sub	%o4, 1, %o4	tst	%o3	! set up for initial iterationLdivloop:	sll	%o2, 4, %o2		! depth 1, accumulated bits 0	bl	L.1.16	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3			! depth 2, accumulated bits 1	bl	L.2.17	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3			! depth 3, accumulated bits 3	bl	L.3.19	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3			! depth 4, accumulated bits 7	bl	L.4.23	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	b	9f	 add	%o2, (7*2+1), %o2L.4.23:	! remainder is negative	addcc	%o3,%o5,%o3	b	9f	 add	%o2, (7*2-1), %o2L.3.19:	! remainder is negative	addcc	%o3,%o5,%o3			! depth 4, accumulated bits 5	bl	L.4.21	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	b	9f	 add	%o2, (5*2+1), %o2L.4.21:	! remainder is negative	addcc	%o3,%o5,%o3	b	9f	 add	%o2, (5*2-1), %o2L.2.17:	! remainder is negative	addcc	%o3,%o5,%o3			! depth 3, accumulated bits 1	bl	L.3.17	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3			! depth 4, accumulated bits 3	bl	L.4.19	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	b	9f	 add	%o2, (3*2+1), %o2L.4.19:	! remainder is negative	addcc	%o3,%o5,%o3	b	9f	 add	%o2, (3*2-1), %o2L.3.17:	! remainder is negative	addcc	%o3,%o5,%o3			! depth 4, accumulated bits 1	bl	L.4.17	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	b	9f	 add	%o2, (1*2+1), %o2	L.4.17:	! remainder is negative	addcc	%o3,%o5,%o3	b	9f	 add	%o2, (1*2-1), %o2L.1.16:	! remainder is negative	addcc	%o3,%o5,%o3			! depth 2, accumulated bits -1	bl	L.2.15	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3			! depth 3, accumulated bits -1	bl	L.3.15	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3			! depth 4, accumulated bits -1	bl	L.4.15	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	b	9f	 add	%o2, (-1*2+1), %o2L.4.15:	! remainder is negative	addcc	%o3,%o5,%o3	b	9f	 add	%o2, (-1*2-1), %o2L.3.15:	! remainder is negative	addcc	%o3,%o5,%o3			! depth 4, accumulated bits -3	bl	L.4.13	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	b	9f	 add	%o2, (-3*2+1), %o2L.4.13:	! remainder is negative	addcc	%o3,%o5,%o3	b	9f	 add	%o2, (-3*2-1), %o2L.2.15:	! remainder is negative	addcc	%o3,%o5,%o3			! depth 3, accumulated bits -3	bl	L.3.13	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3			! depth 4, accumulated bits -5	bl	L.4.11	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	b	9f	 add	%o2, (-5*2+1), %o2	L.4.11:	! remainder is negative	addcc	%o3,%o5,%o3	b	9f	 add	%o2, (-5*2-1), %o2L.3.13:	! remainder is negative	addcc	%o3,%o5,%o3			! depth 4, accumulated bits -7	bl	L.4.9	 srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	b	9f	 add	%o2, (-7*2+1), %o2L.4.9:	! remainder is negative	addcc	%o3,%o5,%o3	b	9f	 add	%o2, (-7*2-1), %o2	9:Lend_regular_divide:	subcc	%o4, 1, %o4	bge	Ldivloop	 tst	%o3	bl,a	Lgot_result	! non-restoring fixup here (one instruction only!)	add	%o3, %o1, %o3Lgot_result:	retl	 mov %o3, %o0	.globl	.urem_patch.urem_patch:	wr	%g0, 0x0, %y	nop	nop	nop	udiv	%o0, %o1, %o2	umul	%o2, %o1, %o2	retl	 sub	%o0, %o2, %o0

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -