⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 aes.c

📁 优龙2410linux2.6.8内核源代码
💻 C
字号:
/*  *  * Glue Code for optimized 586 assembler version of AES * * Copyright (c) 2002, Dr Brian Gladman <>, Worcester, UK. * All rights reserved. * * LICENSE TERMS * * The free distribution and use of this software in both source and binary * form is allowed (with or without changes) provided that: * *   1. distributions of this source code include the above copyright *      notice, this list of conditions and the following disclaimer; * *   2. distributions in binary form include the above copyright *      notice, this list of conditions and the following disclaimer *      in the documentation and/or other associated materials; * *   3. the copyright holder's name is not used to endorse products *      built using this software without specific written permission. * * ALTERNATIVELY, provided that this notice is retained in full, this product * may be distributed under the terms of the GNU General Public License (GPL), * in which case the provisions of the GPL apply INSTEAD OF those given above. * * DISCLAIMER * * This software is provided 'as is' with no explicit or implied warranties * in respect of its properties, including, but not limited to, correctness * and/or fitness for purpose. * * Copyright (c) 2003, Adam J. Richter <adam@yggdrasil.com> (conversion to * 2.5 API). * Copyright (c) 2003, 2004 Fruhwirth Clemens <clemens@endorphin.org> * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com> * */#include <linux/kernel.h>#include <linux/module.h>#include <linux/init.h>#include <linux/types.h>#include <linux/crypto.h>#include <linux/linkage.h>asmlinkage void aes_enc_blk(const u8 *src, u8 *dst, void *ctx);asmlinkage void aes_dec_blk(const u8 *src, u8 *dst, void *ctx);#define AES_MIN_KEY_SIZE	16#define AES_MAX_KEY_SIZE	32#define AES_BLOCK_SIZE		16#define AES_KS_LENGTH		4 * AES_BLOCK_SIZE#define RC_LENGTH		29struct aes_ctx {	u32 ekey[AES_KS_LENGTH];	u32 rounds;	u32 dkey[AES_KS_LENGTH];};#define WPOLY 0x011b#define u32_in(x) le32_to_cpu(*(const u32 *)(x))#define bytes2word(b0, b1, b2, b3)  \	(((u32)(b3) << 24) | ((u32)(b2) << 16) | ((u32)(b1) << 8) | (b0))/* define the finite field multiplies required for Rijndael */#define f2(x) ((x) ? pow[log[x] + 0x19] : 0)#define f3(x) ((x) ? pow[log[x] + 0x01] : 0)#define f9(x) ((x) ? pow[log[x] + 0xc7] : 0)#define fb(x) ((x) ? pow[log[x] + 0x68] : 0)#define fd(x) ((x) ? pow[log[x] + 0xee] : 0)#define fe(x) ((x) ? pow[log[x] + 0xdf] : 0)#define fi(x) ((x) ?   pow[255 - log[x]]: 0)static inline u32 upr(u32 x, int n){	return (x << 8 * n) | (x >> (32 - 8 * n));}static inline u8 bval(u32 x, int n){	return x >> 8 * n;}/* The forward and inverse affine transformations used in the S-box */#define fwd_affine(x) \	(w = (u32)x, w ^= (w<<1)^(w<<2)^(w<<3)^(w<<4), 0x63^(u8)(w^(w>>8)))#define inv_affine(x) \	(w = (u32)x, w = (w<<1)^(w<<3)^(w<<6), 0x05^(u8)(w^(w>>8)))static u32 rcon_tab[RC_LENGTH];u32 ft_tab[4][256];u32 fl_tab[4][256];u32 ls_tab[4][256];u32 im_tab[4][256];u32 il_tab[4][256];u32 it_tab[4][256];void gen_tabs(void){	u32 i, w;	u8 pow[512], log[256];	/*	 * log and power tables for GF(2^8) finite field with	 * WPOLY as modular polynomial - the simplest primitive	 * root is 0x03, used here to generate the tables.	 */	i = 0; w = 1; 		do {		pow[i] = (u8)w;		pow[i + 255] = (u8)w;		log[w] = (u8)i++;		w ^=  (w << 1) ^ (w & 0x80 ? WPOLY : 0);	} while (w != 1);		for(i = 0, w = 1; i < RC_LENGTH; ++i) {		rcon_tab[i] = bytes2word(w, 0, 0, 0);		w = f2(w);	}	for(i = 0; i < 256; ++i) {		u8 b;				b = fwd_affine(fi((u8)i));		w = bytes2word(f2(b), b, b, f3(b));		/* tables for a normal encryption round */		ft_tab[0][i] = w;		ft_tab[1][i] = upr(w, 1);		ft_tab[2][i] = upr(w, 2);		ft_tab[3][i] = upr(w, 3);		w = bytes2word(b, 0, 0, 0);				/*		 * tables for last encryption round		 * (may also be used in the key schedule)		 */		fl_tab[0][i] = w;		fl_tab[1][i] = upr(w, 1);		fl_tab[2][i] = upr(w, 2);		fl_tab[3][i] = upr(w, 3);				/*		 * table for key schedule if fl_tab above is		 * not of the required form		 */		ls_tab[0][i] = w;		ls_tab[1][i] = upr(w, 1);		ls_tab[2][i] = upr(w, 2);		ls_tab[3][i] = upr(w, 3);				b = fi(inv_affine((u8)i));		w = bytes2word(fe(b), f9(b), fd(b), fb(b));		/* tables for the inverse mix column operation  */		im_tab[0][b] = w;		im_tab[1][b] = upr(w, 1);		im_tab[2][b] = upr(w, 2);		im_tab[3][b] = upr(w, 3);		/* tables for a normal decryption round */		it_tab[0][i] = w;		it_tab[1][i] = upr(w,1);		it_tab[2][i] = upr(w,2);		it_tab[3][i] = upr(w,3);		w = bytes2word(b, 0, 0, 0);				/* tables for last decryption round */		il_tab[0][i] = w;		il_tab[1][i] = upr(w,1);		il_tab[2][i] = upr(w,2);		il_tab[3][i] = upr(w,3);    }}#define four_tables(x,tab,vf,rf,c)		\(	tab[0][bval(vf(x,0,c),rf(0,c))]	^	\	tab[1][bval(vf(x,1,c),rf(1,c))] ^	\	tab[2][bval(vf(x,2,c),rf(2,c))] ^	\	tab[3][bval(vf(x,3,c),rf(3,c))]		\)#define vf1(x,r,c)  (x)#define rf1(r,c)    (r)#define rf2(r,c)    ((r-c)&3)#define inv_mcol(x) four_tables(x,im_tab,vf1,rf1,0)#define ls_box(x,c) four_tables(x,fl_tab,vf1,rf2,c)#define ff(x) inv_mcol(x)#define ke4(k,i)							\{									\	k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i];		\	k[4*(i)+5] = ss[1] ^= ss[0];					\	k[4*(i)+6] = ss[2] ^= ss[1];					\	k[4*(i)+7] = ss[3] ^= ss[2];					\}#define kel4(k,i)							\{									\	k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ rcon_tab[i];		\	k[4*(i)+5] = ss[1] ^= ss[0];					\	k[4*(i)+6] = ss[2] ^= ss[1]; k[4*(i)+7] = ss[3] ^= ss[2];	\}#define ke6(k,i)							\{									\	k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i];		\	k[6*(i)+ 7] = ss[1] ^= ss[0];					\	k[6*(i)+ 8] = ss[2] ^= ss[1];					\	k[6*(i)+ 9] = ss[3] ^= ss[2];					\	k[6*(i)+10] = ss[4] ^= ss[3];					\	k[6*(i)+11] = ss[5] ^= ss[4];					\}#define kel6(k,i)							\{									\	k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i];		\	k[6*(i)+ 7] = ss[1] ^= ss[0];					\	k[6*(i)+ 8] = ss[2] ^= ss[1];					\	k[6*(i)+ 9] = ss[3] ^= ss[2];					\}#define ke8(k,i)							\{									\	k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i];		\	k[8*(i)+ 9] = ss[1] ^= ss[0];					\	k[8*(i)+10] = ss[2] ^= ss[1];					\	k[8*(i)+11] = ss[3] ^= ss[2];					\	k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0);				\	k[8*(i)+13] = ss[5] ^= ss[4];					\	k[8*(i)+14] = ss[6] ^= ss[5];					\	k[8*(i)+15] = ss[7] ^= ss[6];					\}#define kel8(k,i)							\{									\	k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i];		\	k[8*(i)+ 9] = ss[1] ^= ss[0];					\	k[8*(i)+10] = ss[2] ^= ss[1];					\	k[8*(i)+11] = ss[3] ^= ss[2];					\}#define kdf4(k,i)							\{									\	ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3];				\	ss[1] = ss[1] ^ ss[3];						\	ss[2] = ss[2] ^ ss[3];						\	ss[3] = ss[3];							\	ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i];			\	ss[i % 4] ^= ss[4];						\	ss[4] ^= k[4*(i)];						\	k[4*(i)+4] = ff(ss[4]);						\	ss[4] ^= k[4*(i)+1];						\	k[4*(i)+5] = ff(ss[4]);						\	ss[4] ^= k[4*(i)+2];						\	k[4*(i)+6] = ff(ss[4]);						\	ss[4] ^= k[4*(i)+3];						\	k[4*(i)+7] = ff(ss[4]);						\}#define kd4(k,i)							\{									\	ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i];			\	ss[i % 4] ^= ss[4];						\	ss[4] = ff(ss[4]);						\	k[4*(i)+4] = ss[4] ^= k[4*(i)];					\	k[4*(i)+5] = ss[4] ^= k[4*(i)+1];				\	k[4*(i)+6] = ss[4] ^= k[4*(i)+2];				\	k[4*(i)+7] = ss[4] ^= k[4*(i)+3];				\}#define kdl4(k,i)							\{									\	ss[4] = ls_box(ss[(i+3) % 4], 3) ^ rcon_tab[i];			\	ss[i % 4] ^= ss[4];						\	k[4*(i)+4] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3];			\	k[4*(i)+5] = ss[1] ^ ss[3];					\	k[4*(i)+6] = ss[0];						\	k[4*(i)+7] = ss[1];						\}#define kdf6(k,i)							\{									\	ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i];				\	k[6*(i)+ 6] = ff(ss[0]);					\	ss[1] ^= ss[0];							\	k[6*(i)+ 7] = ff(ss[1]);					\	ss[2] ^= ss[1];							\	k[6*(i)+ 8] = ff(ss[2]);					\	ss[3] ^= ss[2];							\	k[6*(i)+ 9] = ff(ss[3]);					\	ss[4] ^= ss[3];							\	k[6*(i)+10] = ff(ss[4]);					\	ss[5] ^= ss[4];							\	k[6*(i)+11] = ff(ss[5]);					\}#define kd6(k,i)							\{									\	ss[6] = ls_box(ss[5],3) ^ rcon_tab[i];				\	ss[0] ^= ss[6]; ss[6] = ff(ss[6]);				\	k[6*(i)+ 6] = ss[6] ^= k[6*(i)];				\	ss[1] ^= ss[0];							\	k[6*(i)+ 7] = ss[6] ^= k[6*(i)+ 1];				\	ss[2] ^= ss[1];							\	k[6*(i)+ 8] = ss[6] ^= k[6*(i)+ 2];				\	ss[3] ^= ss[2];							\	k[6*(i)+ 9] = ss[6] ^= k[6*(i)+ 3];				\	ss[4] ^= ss[3];							\	k[6*(i)+10] = ss[6] ^= k[6*(i)+ 4];				\	ss[5] ^= ss[4];							\	k[6*(i)+11] = ss[6] ^= k[6*(i)+ 5];				\}#define kdl6(k,i)							\{									\	ss[0] ^= ls_box(ss[5],3) ^ rcon_tab[i];				\	k[6*(i)+ 6] = ss[0];						\	ss[1] ^= ss[0];							\	k[6*(i)+ 7] = ss[1];						\	ss[2] ^= ss[1];							\	k[6*(i)+ 8] = ss[2];						\	ss[3] ^= ss[2];							\	k[6*(i)+ 9] = ss[3];						\}#define kdf8(k,i)							\{									\	ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i];				\	k[8*(i)+ 8] = ff(ss[0]);					\	ss[1] ^= ss[0];							\	k[8*(i)+ 9] = ff(ss[1]);					\	ss[2] ^= ss[1];							\	k[8*(i)+10] = ff(ss[2]);					\	ss[3] ^= ss[2];							\	k[8*(i)+11] = ff(ss[3]);					\	ss[4] ^= ls_box(ss[3],0);					\	k[8*(i)+12] = ff(ss[4]);					\	ss[5] ^= ss[4];							\	k[8*(i)+13] = ff(ss[5]);					\	ss[6] ^= ss[5];							\	k[8*(i)+14] = ff(ss[6]);					\	ss[7] ^= ss[6];							\	k[8*(i)+15] = ff(ss[7]);					\}#define kd8(k,i)							\{									\	u32 __g = ls_box(ss[7],3) ^ rcon_tab[i];			\	ss[0] ^= __g;							\	__g = ff(__g);							\	k[8*(i)+ 8] = __g ^= k[8*(i)];					\	ss[1] ^= ss[0];							\	k[8*(i)+ 9] = __g ^= k[8*(i)+ 1];				\	ss[2] ^= ss[1];							\	k[8*(i)+10] = __g ^= k[8*(i)+ 2];				\	ss[3] ^= ss[2];							\	k[8*(i)+11] = __g ^= k[8*(i)+ 3];				\	__g = ls_box(ss[3],0);						\	ss[4] ^= __g;							\	__g = ff(__g);							\	k[8*(i)+12] = __g ^= k[8*(i)+ 4];				\	ss[5] ^= ss[4];							\	k[8*(i)+13] = __g ^= k[8*(i)+ 5];				\	ss[6] ^= ss[5];							\	k[8*(i)+14] = __g ^= k[8*(i)+ 6];				\	ss[7] ^= ss[6];							\	k[8*(i)+15] = __g ^= k[8*(i)+ 7];				\}#define kdl8(k,i)							\{									\	ss[0] ^= ls_box(ss[7],3) ^ rcon_tab[i];				\	k[8*(i)+ 8] = ss[0];						\	ss[1] ^= ss[0];							\	k[8*(i)+ 9] = ss[1];						\	ss[2] ^= ss[1];							\	k[8*(i)+10] = ss[2];						\	ss[3] ^= ss[2];							\	k[8*(i)+11] = ss[3];						\}static intaes_set_key(void *ctx_arg, const u8 *in_key, unsigned int key_len, u32 *flags){	int i;	u32 ss[8];	struct aes_ctx *ctx = ctx_arg;	/* encryption schedule */		ctx->ekey[0] = ss[0] = u32_in(in_key);	ctx->ekey[1] = ss[1] = u32_in(in_key + 4);	ctx->ekey[2] = ss[2] = u32_in(in_key + 8);	ctx->ekey[3] = ss[3] = u32_in(in_key + 12);	switch(key_len) {	case 16:		for (i = 0; i < 9; i++)			ke4(ctx->ekey, i);		kel4(ctx->ekey, 9);		ctx->rounds = 10;		break;			case 24:		ctx->ekey[4] = ss[4] = u32_in(in_key + 16);		ctx->ekey[5] = ss[5] = u32_in(in_key + 20);		for (i = 0; i < 7; i++)			ke6(ctx->ekey, i);		kel6(ctx->ekey, 7); 		ctx->rounds = 12;		break;	case 32:		ctx->ekey[4] = ss[4] = u32_in(in_key + 16);		ctx->ekey[5] = ss[5] = u32_in(in_key + 20);		ctx->ekey[6] = ss[6] = u32_in(in_key + 24);		ctx->ekey[7] = ss[7] = u32_in(in_key + 28);		for (i = 0; i < 6; i++)			ke8(ctx->ekey, i);		kel8(ctx->ekey, 6);		ctx->rounds = 14;		break;	default:		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;		return -EINVAL;	}		/* decryption schedule */		ctx->dkey[0] = ss[0] = u32_in(in_key);	ctx->dkey[1] = ss[1] = u32_in(in_key + 4);	ctx->dkey[2] = ss[2] = u32_in(in_key + 8);	ctx->dkey[3] = ss[3] = u32_in(in_key + 12);	switch (key_len) {	case 16:		kdf4(ctx->dkey, 0);		for (i = 1; i < 9; i++)			kd4(ctx->dkey, i);		kdl4(ctx->dkey, 9);		break;			case 24:		ctx->dkey[4] = ff(ss[4] = u32_in(in_key + 16));		ctx->dkey[5] = ff(ss[5] = u32_in(in_key + 20));		kdf6(ctx->dkey, 0);		for (i = 1; i < 7; i++)			kd6(ctx->dkey, i);		kdl6(ctx->dkey, 7);		break;	case 32:		ctx->dkey[4] = ff(ss[4] = u32_in(in_key + 16));		ctx->dkey[5] = ff(ss[5] = u32_in(in_key + 20));		ctx->dkey[6] = ff(ss[6] = u32_in(in_key + 24));		ctx->dkey[7] = ff(ss[7] = u32_in(in_key + 28));		kdf8(ctx->dkey, 0);		for (i = 1; i < 6; i++)			kd8(ctx->dkey, i);		kdl8(ctx->dkey, 6);		break;	}	return 0;}static inline void aes_encrypt(void *ctx, u8 *dst, const u8 *src){	aes_enc_blk(src, dst, ctx);}static inline void aes_decrypt(void *ctx, u8 *dst, const u8 *src){	aes_dec_blk(src, dst, ctx);}static struct crypto_alg aes_alg = {	.cra_name		=	"aes",	.cra_flags		=	CRYPTO_ALG_TYPE_CIPHER,	.cra_blocksize		=	AES_BLOCK_SIZE,	.cra_ctxsize		=	sizeof(struct aes_ctx),	.cra_module		=	THIS_MODULE,	.cra_list		=	LIST_HEAD_INIT(aes_alg.cra_list),	.cra_u			=	{		.cipher = {			.cia_min_keysize	=	AES_MIN_KEY_SIZE,			.cia_max_keysize	=	AES_MAX_KEY_SIZE,			.cia_setkey	   	= 	aes_set_key,			.cia_encrypt	 	=	aes_encrypt,			.cia_decrypt	  	=	aes_decrypt		}	}};static int __init aes_init(void){	gen_tabs();	return crypto_register_alg(&aes_alg);}static void __exit aes_fini(void){	crypto_unregister_alg(&aes_alg);}module_init(aes_init);module_exit(aes_fini);MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm, i586 asm optimized");MODULE_LICENSE("Dual BSD/GPL");MODULE_AUTHOR("Fruhwirth Clemens, James Morris, Brian Gladman, Adam Richter");MODULE_ALIAS("aes");

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -