⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 discontig.c

📁 优龙2410linux2.6.8内核源代码
💻 C
字号:
/* * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation * August 2002: added remote node KVA remap - Martin J. Bligh  * * Copyright (C) 2002, IBM Corp. * * All rights reserved.           * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or * NON INFRINGEMENT.  See the GNU General Public License for more * details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */#include <linux/config.h>#include <linux/mm.h>#include <linux/bootmem.h>#include <linux/mmzone.h>#include <linux/highmem.h>#include <linux/initrd.h>#include <asm/e820.h>#include <asm/setup.h>#include <asm/mmzone.h>struct pglist_data *node_data[MAX_NUMNODES];bootmem_data_t node0_bdata;/* * numa interface - we expect the numa architecture specfic code to have *                  populated the following initialisation. * * 1) numnodes         - the total number of nodes configured in the system * 2) physnode_map     - the mapping between a pfn and owning node * 3) node_start_pfn   - the starting page frame number for a node * 3) node_end_pfn     - the ending page fram number for a node *//* * physnode_map keeps track of the physical memory layout of a generic * numa node on a 256Mb break (each element of the array will * represent 256Mb of memory and will be marked by the node id.  so, * if the first gig is on node 0, and the second gig is on node 1 * physnode_map will contain: * *     physnode_map[0-3] = 0; *     physnode_map[4-7] = 1; *     physnode_map[8- ] = -1; */s8 physnode_map[MAX_ELEMENTS] = { [0 ... (MAX_ELEMENTS - 1)] = -1};unsigned long node_start_pfn[MAX_NUMNODES];unsigned long node_end_pfn[MAX_NUMNODES];extern unsigned long find_max_low_pfn(void);extern void find_max_pfn(void);extern void one_highpage_init(struct page *, int, int);extern struct e820map e820;extern unsigned long init_pg_tables_end;extern unsigned long highend_pfn, highstart_pfn;extern unsigned long max_low_pfn;extern unsigned long totalram_pages;extern unsigned long totalhigh_pages;#define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE)unsigned long node_remap_start_pfn[MAX_NUMNODES];unsigned long node_remap_size[MAX_NUMNODES];unsigned long node_remap_offset[MAX_NUMNODES];void *node_remap_start_vaddr[MAX_NUMNODES];void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags);/* * FLAT - support for basic PC memory model with discontig enabled, essentially *        a single node with all available processors in it with a flat *        memory map. */int __init get_memcfg_numa_flat(void){	printk("NUMA - single node, flat memory mode\n");	/* Run the memory configuration and find the top of memory. */	find_max_pfn();	node_start_pfn[0]  = 0;	node_end_pfn[0]	  = max_pfn;        /* Indicate there is one node available. */	node_set_online(0);	numnodes = 1;	return 1;}/* * Find the highest page frame number we have available for the node */static void __init find_max_pfn_node(int nid){	if (node_end_pfn[nid] > max_pfn)		node_end_pfn[nid] = max_pfn;	/*	 * if a user has given mem=XXXX, then we need to make sure 	 * that the node _starts_ before that, too, not just ends	 */	if (node_start_pfn[nid] > max_pfn)		node_start_pfn[nid] = max_pfn;	if (node_start_pfn[nid] > node_end_pfn[nid])		BUG();}/*  * Allocate memory for the pg_data_t for this node via a crude pre-bootmem * method.  For node zero take this from the bottom of memory, for * subsequent nodes place them at node_remap_start_vaddr which contains * node local data in physically node local memory.  See setup_memory() * for details. */static void __init allocate_pgdat(int nid){	if (nid)		NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid];	else {		NODE_DATA(nid) = (pg_data_t *)(__va(min_low_pfn << PAGE_SHIFT));		min_low_pfn += PFN_UP(sizeof(pg_data_t));		memset(NODE_DATA(nid), 0, sizeof(pg_data_t));	}}/* * Register fully available low RAM pages with the bootmem allocator. */static void __init register_bootmem_low_pages(unsigned long system_max_low_pfn){	int i;	for (i = 0; i < e820.nr_map; i++) {		unsigned long curr_pfn, last_pfn, size;		/*		 * Reserve usable low memory		 */		if (e820.map[i].type != E820_RAM)			continue;		/*		 * We are rounding up the start address of usable memory:		 */		curr_pfn = PFN_UP(e820.map[i].addr);		if (curr_pfn >= system_max_low_pfn)			continue;		/*		 * ... and at the end of the usable range downwards:		 */		last_pfn = PFN_DOWN(e820.map[i].addr + e820.map[i].size);		if (last_pfn > system_max_low_pfn)			last_pfn = system_max_low_pfn;		/*		 * .. finally, did all the rounding and playing		 * around just make the area go away?		 */		if (last_pfn <= curr_pfn)			continue;		size = last_pfn - curr_pfn;		free_bootmem_node(NODE_DATA(0), PFN_PHYS(curr_pfn), PFN_PHYS(size));	}}void __init remap_numa_kva(void){	void *vaddr;	unsigned long pfn;	int node;	for (node = 1; node < numnodes; ++node) {		for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) {			vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT);			set_pmd_pfn((ulong) vaddr, 				node_remap_start_pfn[node] + pfn, 				PAGE_KERNEL_LARGE);		}	}}static unsigned long calculate_numa_remap_pages(void){	int nid;	unsigned long size, reserve_pages = 0;	for (nid = 1; nid < numnodes; nid++) {		/* calculate the size of the mem_map needed in bytes */		size = (node_end_pfn[nid] - node_start_pfn[nid] + 1) 			* sizeof(struct page) + sizeof(pg_data_t);		/* convert size to large (pmd size) pages, rounding up */		size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES;		/* now the roundup is correct, convert to PAGE_SIZE pages */		size = size * PTRS_PER_PTE;		printk("Reserving %ld pages of KVA for lmem_map of node %d\n",				size, nid);		node_remap_size[nid] = size;		reserve_pages += size;		node_remap_offset[nid] = reserve_pages;		printk("Shrinking node %d from %ld pages to %ld pages\n",			nid, node_end_pfn[nid], node_end_pfn[nid] - size);		node_end_pfn[nid] -= size;		node_remap_start_pfn[nid] = node_end_pfn[nid];	}	printk("Reserving total of %ld pages for numa KVA remap\n",			reserve_pages);	return reserve_pages;}unsigned long __init setup_memory(void){	int nid;	unsigned long bootmap_size, system_start_pfn, system_max_low_pfn;	unsigned long reserve_pages, pfn;	/*	 * When mapping a NUMA machine we allocate the node_mem_map arrays	 * from node local memory.  They are then mapped directly into KVA	 * between zone normal and vmalloc space.  Calculate the size of	 * this space and use it to adjust the boundry between ZONE_NORMAL	 * and ZONE_HIGHMEM.	 */	get_memcfg_numa();	/* Fill in the physnode_map */	for (nid = 0; nid < numnodes; nid++) {		printk("Node: %d, start_pfn: %ld, end_pfn: %ld\n",				nid, node_start_pfn[nid], node_end_pfn[nid]);		printk("  Setting physnode_map array to node %d for pfns:\n  ",				nid);		for (pfn = node_start_pfn[nid]; pfn < node_end_pfn[nid];	       				pfn += PAGES_PER_ELEMENT) {			physnode_map[pfn / PAGES_PER_ELEMENT] = nid;			printk("%ld ", pfn);		}		printk("\n");	}	reserve_pages = calculate_numa_remap_pages();	/* partially used pages are not usable - thus round upwards */	system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end);	find_max_pfn();	system_max_low_pfn = max_low_pfn = find_max_low_pfn() - reserve_pages;	printk("reserve_pages = %ld find_max_low_pfn() ~ %ld\n",			reserve_pages, max_low_pfn + reserve_pages);	printk("max_pfn = %ld\n", max_pfn);#ifdef CONFIG_HIGHMEM	highstart_pfn = highend_pfn = max_pfn;	if (max_pfn > system_max_low_pfn)		highstart_pfn = system_max_low_pfn;	printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",	       pages_to_mb(highend_pfn - highstart_pfn));#endif	printk(KERN_NOTICE "%ldMB LOWMEM available.\n",			pages_to_mb(system_max_low_pfn));	printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n", 			min_low_pfn, max_low_pfn, highstart_pfn);	printk("Low memory ends at vaddr %08lx\n",			(ulong) pfn_to_kaddr(max_low_pfn));	for (nid = 0; nid < numnodes; nid++) {		node_remap_start_vaddr[nid] = pfn_to_kaddr(			(highstart_pfn + reserve_pages) - node_remap_offset[nid]);		allocate_pgdat(nid);		printk ("node %d will remap to vaddr %08lx - %08lx\n", nid,			(ulong) node_remap_start_vaddr[nid],			(ulong) pfn_to_kaddr(highstart_pfn + reserve_pages			    - node_remap_offset[nid] + node_remap_size[nid]));	}	printk("High memory starts at vaddr %08lx\n",			(ulong) pfn_to_kaddr(highstart_pfn));	vmalloc_earlyreserve = reserve_pages * PAGE_SIZE;	for (nid = 0; nid < numnodes; nid++)		find_max_pfn_node(nid);	NODE_DATA(0)->bdata = &node0_bdata;	/*	 * Initialize the boot-time allocator (with low memory only):	 */	bootmap_size = init_bootmem_node(NODE_DATA(0), min_low_pfn, 0, system_max_low_pfn);	register_bootmem_low_pages(system_max_low_pfn);	/*	 * Reserve the bootmem bitmap itself as well. We do this in two	 * steps (first step was init_bootmem()) because this catches	 * the (very unlikely) case of us accidentally initializing the	 * bootmem allocator with an invalid RAM area.	 */	reserve_bootmem_node(NODE_DATA(0), HIGH_MEMORY, (PFN_PHYS(min_low_pfn) +		 bootmap_size + PAGE_SIZE-1) - (HIGH_MEMORY));	/*	 * reserve physical page 0 - it's a special BIOS page on many boxes,	 * enabling clean reboots, SMP operation, laptop functions.	 */	reserve_bootmem_node(NODE_DATA(0), 0, PAGE_SIZE);	/*	 * But first pinch a few for the stack/trampoline stuff	 * FIXME: Don't need the extra page at 4K, but need to fix	 * trampoline before removing it. (see the GDT stuff)	 */	reserve_bootmem_node(NODE_DATA(0), PAGE_SIZE, PAGE_SIZE);#ifdef CONFIG_ACPI_SLEEP	/*	 * Reserve low memory region for sleep support.	 */	acpi_reserve_bootmem();#endif	/*	 * Find and reserve possible boot-time SMP configuration:	 */	find_smp_config();#ifdef CONFIG_BLK_DEV_INITRD	if (LOADER_TYPE && INITRD_START) {		if (INITRD_START + INITRD_SIZE <= (system_max_low_pfn << PAGE_SHIFT)) {			reserve_bootmem_node(NODE_DATA(0), INITRD_START, INITRD_SIZE);			initrd_start =				INITRD_START ? INITRD_START + PAGE_OFFSET : 0;			initrd_end = initrd_start+INITRD_SIZE;		}		else {			printk(KERN_ERR "initrd extends beyond end of memory "			    "(0x%08lx > 0x%08lx)\ndisabling initrd\n",			    INITRD_START + INITRD_SIZE,			    system_max_low_pfn << PAGE_SHIFT);			initrd_start = 0;		}	}#endif	return system_max_low_pfn;}void __init zone_sizes_init(void){	int nid;	/*	 * Insert nodes into pgdat_list backward so they appear in order.	 * Clobber node 0's links and NULL out pgdat_list before starting.	 */	pgdat_list = NULL;	for (nid = numnodes - 1; nid >= 0; nid--) {       		if (nid)			memset(NODE_DATA(nid), 0, sizeof(pg_data_t));		NODE_DATA(nid)->pgdat_next = pgdat_list;		pgdat_list = NODE_DATA(nid);	}	for (nid = 0; nid < numnodes; nid++) {		unsigned long zones_size[MAX_NR_ZONES] = {0, 0, 0};		unsigned long *zholes_size;		unsigned int max_dma;		unsigned long low = max_low_pfn;		unsigned long start = node_start_pfn[nid];		unsigned long high = node_end_pfn[nid];		max_dma = virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT;		if (start > low) {#ifdef CONFIG_HIGHMEM			BUG_ON(start > high);			zones_size[ZONE_HIGHMEM] = high - start;#endif		} else {			if (low < max_dma)				zones_size[ZONE_DMA] = low;			else {				BUG_ON(max_dma > low);				BUG_ON(low > high);				zones_size[ZONE_DMA] = max_dma;				zones_size[ZONE_NORMAL] = low - max_dma;#ifdef CONFIG_HIGHMEM				zones_size[ZONE_HIGHMEM] = high - low;#endif			}		}		zholes_size = get_zholes_size(nid);		/*		 * We let the lmem_map for node 0 be allocated from the		 * normal bootmem allocator, but other nodes come from the		 * remapped KVA area - mbligh		 */		if (!nid)			free_area_init_node(nid, NODE_DATA(nid), 0, 				zones_size, start, zholes_size);		else {			unsigned long lmem_map;			lmem_map = (unsigned long)node_remap_start_vaddr[nid];			lmem_map += sizeof(pg_data_t) + PAGE_SIZE - 1;			lmem_map &= PAGE_MASK;			free_area_init_node(nid, NODE_DATA(nid), 				(struct page *)lmem_map, zones_size, 				start, zholes_size);		}	}	return;}void __init set_highmem_pages_init(int bad_ppro) {#ifdef CONFIG_HIGHMEM	struct zone *zone;	for_each_zone(zone) {		unsigned long node_pfn, node_high_size, zone_start_pfn;		struct page * zone_mem_map;				if (!is_highmem(zone))			continue;		printk("Initializing %s for node %d\n", zone->name,			zone->zone_pgdat->node_id);		node_high_size = zone->spanned_pages;		zone_mem_map = zone->zone_mem_map;		zone_start_pfn = zone->zone_start_pfn;		for (node_pfn = 0; node_pfn < node_high_size; node_pfn++) {			one_highpage_init((struct page *)(zone_mem_map + node_pfn),					  zone_start_pfn + node_pfn, bad_ppro);		}	}	totalram_pages += totalhigh_pages;#endif}void __init set_max_mapnr_init(void){#ifdef CONFIG_HIGHMEM	struct zone *high0 = &NODE_DATA(0)->node_zones[ZONE_HIGHMEM];	if (high0->spanned_pages > 0)	      	highmem_start_page = high0->zone_mem_map;	else		highmem_start_page = pfn_to_page(max_low_pfn+1); 	num_physpages = highend_pfn;#else	num_physpages = max_low_pfn;#endif}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -