📄 smp.c
字号:
/* spare */ break;#endif#ifdef CONFIG_DEBUGGER case PPC_MSG_DEBUGGER_BREAK: debugger_ipi(regs); break;#endif default: printk("SMP %d: smp_message_recv(): unknown msg %d\n", smp_processor_id(), msg); break; }}void smp_send_reschedule(int cpu){ smp_ops->message_pass(cpu, PPC_MSG_RESCHEDULE);}#ifdef CONFIG_DEBUGGERvoid smp_send_debugger_break(int cpu){ smp_ops->message_pass(cpu, PPC_MSG_DEBUGGER_BREAK);}#endifstatic void stop_this_cpu(void *dummy){ local_irq_disable(); while (1) ;}void smp_send_stop(void){ smp_call_function(stop_this_cpu, NULL, 1, 0);}/* * Structure and data for smp_call_function(). This is designed to minimise * static memory requirements. It also looks cleaner. * Stolen from the i386 version. */static spinlock_t call_lock __cacheline_aligned_in_smp = SPIN_LOCK_UNLOCKED;static struct call_data_struct { void (*func) (void *info); void *info; atomic_t started; atomic_t finished; int wait;} *call_data;/* delay of at least 8 seconds on 1GHz cpu */#define SMP_CALL_TIMEOUT (1UL << (30 + 3))/* * This function sends a 'generic call function' IPI to all other CPUs * in the system. * * [SUMMARY] Run a function on all other CPUs. * <func> The function to run. This must be fast and non-blocking. * <info> An arbitrary pointer to pass to the function. * <nonatomic> currently unused. * <wait> If true, wait (atomically) until function has completed on other CPUs. * [RETURNS] 0 on success, else a negative status code. Does not return until * remote CPUs are nearly ready to execute <<func>> or are or have executed. * * You must not call this function with disabled interrupts or from a * hardware interrupt handler or from a bottom half handler. */int smp_call_function (void (*func) (void *info), void *info, int nonatomic, int wait){ struct call_data_struct data; int ret = -1, cpus; unsigned long timeout; /* Can deadlock when called with interrupts disabled */ WARN_ON(irqs_disabled()); data.func = func; data.info = info; atomic_set(&data.started, 0); data.wait = wait; if (wait) atomic_set(&data.finished, 0); spin_lock(&call_lock); /* Must grab online cpu count with preempt disabled, otherwise * it can change. */ cpus = num_online_cpus() - 1; if (!cpus) { ret = 0; goto out; } call_data = &data; wmb(); /* Send a message to all other CPUs and wait for them to respond */ smp_ops->message_pass(MSG_ALL_BUT_SELF, PPC_MSG_CALL_FUNCTION); /* Wait for response */ timeout = SMP_CALL_TIMEOUT; while (atomic_read(&data.started) != cpus) { HMT_low(); if (--timeout == 0) { printk("smp_call_function on cpu %d: other cpus not " "responding (%d)\n", smp_processor_id(), atomic_read(&data.started)); debugger(NULL); goto out; } } if (wait) { timeout = SMP_CALL_TIMEOUT; while (atomic_read(&data.finished) != cpus) { HMT_low(); if (--timeout == 0) { printk("smp_call_function on cpu %d: other " "cpus not finishing (%d/%d)\n", smp_processor_id(), atomic_read(&data.finished), atomic_read(&data.started)); debugger(NULL); goto out; } } } ret = 0;out: call_data = NULL; HMT_medium(); spin_unlock(&call_lock); return ret;}void smp_call_function_interrupt(void){ void (*func) (void *info); void *info; int wait; /* call_data will be NULL if the sender timed out while * waiting on us to receive the call. */ if (!call_data) return; func = call_data->func; info = call_data->info; wait = call_data->wait; if (!wait) smp_mb__before_atomic_inc(); /* * Notify initiating CPU that I've grabbed the data and am * about to execute the function */ atomic_inc(&call_data->started); /* * At this point the info structure may be out of scope unless wait==1 */ (*func)(info); if (wait) { smp_mb__before_atomic_inc(); atomic_inc(&call_data->finished); }}extern unsigned long decr_overclock;extern struct gettimeofday_struct do_gtod;struct thread_info *current_set[NR_CPUS];DECLARE_PER_CPU(unsigned int, pvr);static void __devinit smp_store_cpu_info(int id){ per_cpu(pvr, id) = _get_PVR();}static void __init smp_create_idle(unsigned int cpu){ struct pt_regs regs; struct task_struct *p; /* create a process for the processor */ /* only regs.msr is actually used, and 0 is OK for it */ memset(®s, 0, sizeof(struct pt_regs)); p = copy_process(CLONE_VM | CLONE_IDLETASK, 0, ®s, 0, NULL, NULL); if (IS_ERR(p)) panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p)); wake_up_forked_process(p); init_idle(p, cpu); unhash_process(p); paca[cpu].__current = p; current_set[cpu] = p->thread_info;}void __init smp_prepare_cpus(unsigned int max_cpus){ unsigned int cpu; /* * setup_cpu may need to be called on the boot cpu. We havent * spun any cpus up but lets be paranoid. */ BUG_ON(boot_cpuid != smp_processor_id()); /* Fixup boot cpu */ smp_store_cpu_info(boot_cpuid); cpu_callin_map[boot_cpuid] = 1; paca[boot_cpuid].prof_counter = 1; paca[boot_cpuid].prof_multiplier = 1;#ifndef CONFIG_PPC_ISERIES paca[boot_cpuid].next_jiffy_update_tb = tb_last_stamp = get_tb(); /* * Should update do_gtod.stamp_xsec. * For now we leave it which means the time can be some * number of msecs off until someone does a settimeofday() */ do_gtod.tb_orig_stamp = tb_last_stamp; look_for_more_cpus();#endif max_cpus = smp_ops->probe(); /* Backup CPU 0 state if necessary */ __save_cpu_setup(); smp_space_timers(max_cpus); for_each_cpu(cpu) if (cpu != boot_cpuid) smp_create_idle(cpu);}void __devinit smp_prepare_boot_cpu(void){ BUG_ON(smp_processor_id() != boot_cpuid); /* cpu_possible is set up in prom.c */ cpu_set(boot_cpuid, cpu_online_map); paca[boot_cpuid].__current = current; current_set[boot_cpuid] = current->thread_info;}int __devinit __cpu_up(unsigned int cpu){ int c; /* At boot, don't bother with non-present cpus -JSCHOPP */ if (system_state == SYSTEM_BOOTING && !cpu_present_at_boot(cpu)) return -ENOENT; paca[cpu].prof_counter = 1; paca[cpu].prof_multiplier = 1; paca[cpu].default_decr = tb_ticks_per_jiffy / decr_overclock; if (!(cur_cpu_spec->cpu_features & CPU_FTR_SLB)) { void *tmp; /* maximum of 48 CPUs on machines with a segment table */ if (cpu >= 48) BUG(); tmp = &stab_array[PAGE_SIZE * cpu]; memset(tmp, 0, PAGE_SIZE); paca[cpu].stab_addr = (unsigned long)tmp; paca[cpu].stab_real = virt_to_abs(tmp); } /* The information for processor bringup must * be written out to main store before we release * the processor. */ mb(); /* wake up cpus */ smp_ops->kick_cpu(cpu); /* * wait to see if the cpu made a callin (is actually up). * use this value that I found through experimentation. * -- Cort */ if (system_state == SYSTEM_BOOTING) for (c = 5000; c && !cpu_callin_map[cpu]; c--) udelay(100);#ifdef CONFIG_HOTPLUG_CPU else /* * CPUs can take much longer to come up in the * hotplug case. Wait five seconds. */ for (c = 25; c && !cpu_callin_map[cpu]; c--) { set_current_state(TASK_UNINTERRUPTIBLE); schedule_timeout(HZ/5); }#endif if (!cpu_callin_map[cpu]) { printk("Processor %u is stuck.\n", cpu); return -ENOENT; } printk("Processor %u found.\n", cpu); if (smp_ops->give_timebase) smp_ops->give_timebase(); /* Wait until cpu puts itself in the online map */ while (!cpu_online(cpu)) cpu_relax(); return 0;}extern unsigned int default_distrib_server;/* Activate a secondary processor. */int __devinit start_secondary(void *unused){ unsigned int cpu = smp_processor_id(); atomic_inc(&init_mm.mm_count); current->active_mm = &init_mm; smp_store_cpu_info(cpu); set_dec(paca[cpu].default_decr); cpu_callin_map[cpu] = 1; smp_ops->setup_cpu(cpu); if (smp_ops->take_timebase) smp_ops->take_timebase();#ifdef CONFIG_PPC_PSERIES if (cur_cpu_spec->firmware_features & FW_FEATURE_SPLPAR) { vpa_init(cpu); }#ifdef CONFIG_IRQ_ALL_CPUS /* Put the calling processor into the GIQ. This is really only * necessary from a secondary thread as the OF start-cpu interface * performs this function for us on primary threads. */ /* TODO: 9005 is #defined in rtas-proc.c -- move to a header */ rtas_set_indicator(9005, default_distrib_server, 1);#endif#endif spin_lock(&call_lock); cpu_set(cpu, cpu_online_map); spin_unlock(&call_lock); local_irq_enable(); return cpu_idle(NULL);}int setup_profiling_timer(unsigned int multiplier){ return 0;}void __init smp_cpus_done(unsigned int max_cpus){ cpumask_t old_mask; /* We want the setup_cpu() here to be called from CPU 0, but our * init thread may have been "borrowed" by another CPU in the meantime * se we pin us down to CPU 0 for a short while */ old_mask = current->cpus_allowed; set_cpus_allowed(current, cpumask_of_cpu(boot_cpuid)); smp_ops->setup_cpu(boot_cpuid); /* XXX fix this, xics currently relies on it - Anton */ smp_threads_ready = 1; set_cpus_allowed(current, old_mask);}#ifdef CONFIG_SCHED_SMT#ifdef CONFIG_NUMAstatic struct sched_group sched_group_cpus[NR_CPUS];static struct sched_group sched_group_phys[NR_CPUS];static struct sched_group sched_group_nodes[MAX_NUMNODES];static DEFINE_PER_CPU(struct sched_domain, cpu_domains);static DEFINE_PER_CPU(struct sched_domain, phys_domains);static DEFINE_PER_CPU(struct sched_domain, node_domains);__init void arch_init_sched_domains(void){ int i; struct sched_group *first = NULL, *last = NULL; /* Set up domains */ for_each_cpu(i) { struct sched_domain *cpu_domain = &per_cpu(cpu_domains, i); struct sched_domain *phys_domain = &per_cpu(phys_domains, i); struct sched_domain *node_domain = &per_cpu(node_domains, i); int node = cpu_to_node(i); cpumask_t nodemask = node_to_cpumask(node); cpumask_t my_cpumask = cpumask_of_cpu(i); cpumask_t sibling_cpumask = cpumask_of_cpu(i ^ 0x1); *cpu_domain = SD_SIBLING_INIT; if (cur_cpu_spec->cpu_features & CPU_FTR_SMT) cpus_or(cpu_domain->span, my_cpumask, sibling_cpumask); else cpu_domain->span = my_cpumask; cpu_domain->parent = phys_domain; cpu_domain->groups = &sched_group_cpus[i]; *phys_domain = SD_CPU_INIT; phys_domain->span = nodemask; phys_domain->parent = node_domain; phys_domain->groups = &sched_group_phys[first_cpu(cpu_domain->span)]; *node_domain = SD_NODE_INIT; node_domain->span = cpu_possible_map; node_domain->groups = &sched_group_nodes[node]; } /* Set up CPU (sibling) groups */ for_each_cpu(i) { struct sched_domain *cpu_domain = &per_cpu(cpu_domains, i); int j; first = last = NULL; if (i != first_cpu(cpu_domain->span)) continue; for_each_cpu_mask(j, cpu_domain->span) { struct sched_group *cpu = &sched_group_cpus[j]; cpus_clear(cpu->cpumask); cpu_set(j, cpu->cpumask); cpu->cpu_power = SCHED_LOAD_SCALE; if (!first) first = cpu; if (last) last->next = cpu; last = cpu; } last->next = first; } for (i = 0; i < MAX_NUMNODES; i++) { int j; cpumask_t nodemask; struct sched_group *node = &sched_group_nodes[i]; cpumask_t node_cpumask = node_to_cpumask(i); cpus_and(nodemask, node_cpumask, cpu_possible_map); if (cpus_empty(nodemask)) continue; first = last = NULL; /* Set up physical groups */ for_each_cpu_mask(j, nodemask) { struct sched_domain *cpu_domain = &per_cpu(cpu_domains, j); struct sched_group *cpu = &sched_group_phys[j]; if (j != first_cpu(cpu_domain->span)) continue; cpu->cpumask = cpu_domain->span; /* * Make each extra sibling increase power by 10% of * the basic CPU. This is very arbitrary. */ cpu->cpu_power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE*(cpus_weight(cpu->cpumask)-1) / 10; node->cpu_power += cpu->cpu_power; if (!first) first = cpu; if (last) last->next = cpu; last = cpu; } last->next = first; } /* Set up nodes */ first = last = NULL; for (i = 0; i < MAX_NUMNODES; i++) { struct sched_group *cpu = &sched_group_nodes[i]; cpumask_t nodemask; cpumask_t node_cpumask = node_to_cpumask(i); cpus_and(nodemask, node_cpumask, cpu_possible_map); if (cpus_empty(nodemask)) continue; cpu->cpumask = nodemask; /* ->cpu_power already setup */ if (!first) first = cpu; if (last) last->next = cpu; last = cpu; } last->next = first; mb(); for_each_cpu(i) { struct sched_domain *cpu_domain = &per_cpu(cpu_domains, i); cpu_attach_domain(cpu_domain, i); }}#else /* !CONFIG_NUMA */static struct sched_group sched_group_cpus[NR_CPUS];static struct sched_group sched_group_phys[NR_CPUS];static DEFINE_PER_CPU(struct sched_domain, cpu_domains);static DEFINE_PER_CPU(struct sched_domain, phys_domains);__init void arch_init_sched_domains(void){ int i; struct sched_group *first = NULL, *last = NULL; /* Set up domains */ for_each_cpu(i) { struct sched_domain *cpu_domain = &per_cpu(cpu_domains, i); struct sched_domain *phys_domain = &per_cpu(phys_domains, i); cpumask_t my_cpumask = cpumask_of_cpu(i); cpumask_t sibling_cpumask = cpumask_of_cpu(i ^ 0x1); *cpu_domain = SD_SIBLING_INIT; if (cur_cpu_spec->cpu_features & CPU_FTR_SMT) cpus_or(cpu_domain->span, my_cpumask, sibling_cpumask); else cpu_domain->span = my_cpumask; cpu_domain->parent = phys_domain; cpu_domain->groups = &sched_group_cpus[i]; *phys_domain = SD_CPU_INIT; phys_domain->span = cpu_possible_map; phys_domain->groups = &sched_group_phys[first_cpu(cpu_domain->span)]; } /* Set up CPU (sibling) groups */ for_each_cpu(i) { struct sched_domain *cpu_domain = &per_cpu(cpu_domains, i); int j; first = last = NULL; if (i != first_cpu(cpu_domain->span)) continue; for_each_cpu_mask(j, cpu_domain->span) { struct sched_group *cpu = &sched_group_cpus[j]; cpus_clear(cpu->cpumask); cpu_set(j, cpu->cpumask); cpu->cpu_power = SCHED_LOAD_SCALE; if (!first) first = cpu; if (last) last->next = cpu; last = cpu; } last->next = first; } first = last = NULL; /* Set up physical groups */ for_each_cpu(i) { struct sched_domain *cpu_domain = &per_cpu(cpu_domains, i); struct sched_group *cpu = &sched_group_phys[i]; if (i != first_cpu(cpu_domain->span)) continue; cpu->cpumask = cpu_domain->span; /* See SMT+NUMA setup for comment */ cpu->cpu_power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE*(cpus_weight(cpu->cpumask)-1) / 10; if (!first) first = cpu; if (last) last->next = cpu; last = cpu; } last->next = first; mb(); for_each_cpu(i) { struct sched_domain *cpu_domain = &per_cpu(cpu_domains, i); cpu_attach_domain(cpu_domain, i); }}#endif /* CONFIG_NUMA */#endif /* CONFIG_SCHED_SMT */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -