⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 unaligned.c

📁 优龙2410linux2.6.8内核源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
void kernel_mna_trap_fault(struct pt_regs *regs, unsigned int insn) __asm__ ("kernel_mna_trap_fault");void kernel_mna_trap_fault(struct pt_regs *regs, unsigned int insn){	unsigned long g2 = regs->u_regs [UREG_G2];	unsigned long fixup = search_extables_range(regs->tpc, &g2);	if (!fixup) {		unsigned long address = compute_effective_address(regs, insn, ((insn >> 25) & 0x1f));        	if (address < PAGE_SIZE) {                	printk(KERN_ALERT "Unable to handle kernel NULL pointer dereference in mna handler");        	} else                	printk(KERN_ALERT "Unable to handle kernel paging request in mna handler");	        printk(KERN_ALERT " at virtual address %016lx\n",address);		printk(KERN_ALERT "current->{mm,active_mm}->context = %016lx\n",			(current->mm ? current->mm->context :			current->active_mm->context));		printk(KERN_ALERT "current->{mm,active_mm}->pgd = %016lx\n",			(current->mm ? (unsigned long) current->mm->pgd :			(unsigned long) current->active_mm->pgd));	        die_if_kernel("Oops", regs);		/* Not reached */	}	regs->tpc = fixup;	regs->tnpc = regs->tpc + 4;	regs->u_regs [UREG_G2] = g2;	regs->tstate &= ~TSTATE_ASI;	regs->tstate |= (ASI_AIUS << 24UL);}asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn, unsigned long sfar, unsigned long sfsr){	enum direction dir = decode_direction(insn);	int size = decode_access_size(insn);	if (!ok_for_kernel(insn) || dir == both) {		printk("Unsupported unaligned load/store trap for kernel at <%016lx>.\n",		       regs->tpc);		unaligned_panic("Kernel does fpu/atomic unaligned load/store.", regs);		__asm__ __volatile__ ("\n""kernel_unaligned_trap_fault:\n\t"		"mov	%0, %%o0\n\t"		"call	kernel_mna_trap_fault\n\t"		" mov	%1, %%o1\n\t"		:		: "r" (regs), "r" (insn)		: "o0", "o1", "o2", "o3", "o4", "o5", "o7",		  "g1", "g2", "g3", "g4", "g5", "g7", "cc");	} else {		unsigned long addr = compute_effective_address(regs, insn, ((insn >> 25) & 0x1f));#ifdef DEBUG_MNA		printk("KMNA: pc=%016lx [dir=%s addr=%016lx size=%d] retpc[%016lx]\n",		       regs->tpc, dirstrings[dir], addr, size, regs->u_regs[UREG_RETPC]);#endif		switch (dir) {		case load:			do_integer_load(fetch_reg_addr(((insn>>25)&0x1f), regs),					size, (unsigned long *) addr,					decode_signedness(insn), decode_asi(insn, regs),					kernel_unaligned_trap_fault);			break;		case store:			do_integer_store(((insn>>25)&0x1f), size,					 (unsigned long *) addr, regs,					 decode_asi(insn, regs),					 kernel_unaligned_trap_fault);			break;#if 0 /* unsupported */		case both:			do_atomic(fetch_reg_addr(((insn>>25)&0x1f), regs),				  (unsigned long *) addr,				  kernel_unaligned_trap_fault);			break;#endif		default:			panic("Impossible kernel unaligned trap.");			/* Not reached... */		}		advance(regs);	}}static char popc_helper[] = {0, 1, 1, 2, 1, 2, 2, 3,1, 2, 2, 3, 2, 3, 3, 4, };int handle_popc(u32 insn, struct pt_regs *regs){	u64 value;	int ret, i, rd = ((insn >> 25) & 0x1f);	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;	                        	if (insn & 0x2000) {		maybe_flush_windows(0, 0, rd, from_kernel);		value = sign_extend_imm13(insn);	} else {		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);		value = fetch_reg(insn & 0x1f, regs);	}	for (ret = 0, i = 0; i < 16; i++) {		ret += popc_helper[value & 0xf];		value >>= 4;	}	if (rd < 16) {		if (rd)			regs->u_regs[rd] = ret;	} else {		if (test_thread_flag(TIF_32BIT)) {			struct reg_window32 __user *win32;			win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));			put_user(ret, &win32->locals[rd - 16]);		} else {			struct reg_window __user *win;			win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);			put_user(ret, &win->locals[rd - 16]);		}	}	advance(regs);	return 1;}extern void do_fpother(struct pt_regs *regs);extern void do_privact(struct pt_regs *regs);extern void data_access_exception(struct pt_regs *regs,				  unsigned long sfsr,				  unsigned long sfar);int handle_ldf_stq(u32 insn, struct pt_regs *regs){	unsigned long addr = compute_effective_address(regs, insn, 0);	int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);	struct fpustate *f = FPUSTATE;	int asi = decode_asi(insn, regs);	int flag = (freg < 32) ? FPRS_DL : FPRS_DU;	save_and_clear_fpu();	current_thread_info()->xfsr[0] &= ~0x1c000;	if (freg & 3) {		current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;		do_fpother(regs);		return 0;	}	if (insn & 0x200000) {		/* STQ */		u64 first = 0, second = 0;				if (current_thread_info()->fpsaved[0] & flag) {			first = *(u64 *)&f->regs[freg];			second = *(u64 *)&f->regs[freg+2];		}		if (asi < 0x80) {			do_privact(regs);			return 1;		}		switch (asi) {		case ASI_P:		case ASI_S: break;		case ASI_PL:		case ASI_SL: 			{				/* Need to convert endians */				u64 tmp = __swab64p(&first);								first = __swab64p(&second);				second = tmp;				break;			}		default:			data_access_exception(regs, 0, addr);			return 1;		}		if (put_user (first >> 32, (u32 __user *)addr) ||		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {		    	data_access_exception(regs, 0, addr);		    	return 1;		}	} else {		/* LDF, LDDF, LDQF */		u32 data[4] __attribute__ ((aligned(8)));		int size, i;		int err;		if (asi < 0x80) {			do_privact(regs);			return 1;		} else if (asi > ASI_SNFL) {			data_access_exception(regs, 0, addr);			return 1;		}		switch (insn & 0x180000) {		case 0x000000: size = 1; break;		case 0x100000: size = 4; break;		default: size = 2; break;		}		for (i = 0; i < size; i++)			data[i] = 0;				err = get_user (data[0], (u32 __user *) addr);		if (!err) {			for (i = 1; i < size; i++)				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));		}		if (err && !(asi & 0x2 /* NF */)) {			data_access_exception(regs, 0, addr);			return 1;		}		if (asi & 0x8) /* Little */ {			u64 tmp;			switch (size) {			case 1: data[0] = le32_to_cpup(data + 0); break;			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));				break;			case 4: tmp = le64_to_cpup((u64 *)(data + 0));				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));				*(u64 *)(data + 2) = tmp;				break;			}		}		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {			current_thread_info()->fpsaved[0] = FPRS_FEF;			current_thread_info()->gsr[0] = 0;		}		if (!(current_thread_info()->fpsaved[0] & flag)) {			if (freg < 32)				memset(f->regs, 0, 32*sizeof(u32));			else				memset(f->regs+32, 0, 32*sizeof(u32));		}		memcpy(f->regs + freg, data, size * 4);		current_thread_info()->fpsaved[0] |= flag;	}	advance(regs);	return 1;}void handle_ld_nf(u32 insn, struct pt_regs *regs){	int rd = ((insn >> 25) & 0x1f);	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;	unsigned long *reg;	                        	maybe_flush_windows(0, 0, rd, from_kernel);	reg = fetch_reg_addr(rd, regs);	if (from_kernel || rd < 16) {		reg[0] = 0;		if ((insn & 0x780000) == 0x180000)			reg[1] = 0;	} else if (test_thread_flag(TIF_32BIT)) {		put_user(0, (int __user *) reg);		if ((insn & 0x780000) == 0x180000)			put_user(0, ((int __user *) reg) + 1);	} else {		put_user(0, (unsigned long __user *) reg);		if ((insn & 0x780000) == 0x180000)			put_user(0, (unsigned long __user *) reg + 1);	}	advance(regs);}void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr){	unsigned long pc = regs->tpc;	unsigned long tstate = regs->tstate;	u32 insn;	u32 first, second;	u64 value;	u8 asi, freg;	int flag;	struct fpustate *f = FPUSTATE;	if (tstate & TSTATE_PRIV)		die_if_kernel("lddfmna from kernel", regs);	if (test_thread_flag(TIF_32BIT))		pc = (u32)pc;	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {		asi = sfsr >> 16;		if ((asi > ASI_SNFL) ||		    (asi < ASI_P))			goto daex;		if (get_user(first, (u32 __user *)sfar) ||		     get_user(second, (u32 __user *)(sfar + 4))) {			if (asi & 0x2) /* NF */ {				first = 0; second = 0;			} else				goto daex;		}		save_and_clear_fpu();		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);		value = (((u64)first) << 32) | second;		if (asi & 0x8) /* Little */			value = __swab64p(&value);		flag = (freg < 32) ? FPRS_DL : FPRS_DU;		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {			current_thread_info()->fpsaved[0] = FPRS_FEF;			current_thread_info()->gsr[0] = 0;		}		if (!(current_thread_info()->fpsaved[0] & flag)) {			if (freg < 32)				memset(f->regs, 0, 32*sizeof(u32));			else				memset(f->regs+32, 0, 32*sizeof(u32));		}		*(u64 *)(f->regs + freg) = value;		current_thread_info()->fpsaved[0] |= flag;	} else {daex:		data_access_exception(regs, sfsr, sfar);		return;	}	advance(regs);	return;}void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr){	unsigned long pc = regs->tpc;	unsigned long tstate = regs->tstate;	u32 insn;	u64 value;	u8 asi, freg;	int flag;	struct fpustate *f = FPUSTATE;	if (tstate & TSTATE_PRIV)		die_if_kernel("stdfmna from kernel", regs);	if (test_thread_flag(TIF_32BIT))		pc = (u32)pc;	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);		asi = sfsr >> 16;		value = 0;		flag = (freg < 32) ? FPRS_DL : FPRS_DU;		if ((asi > ASI_SNFL) ||		    (asi < ASI_P))			goto daex;		save_and_clear_fpu();		if (current_thread_info()->fpsaved[0] & flag)			value = *(u64 *)&f->regs[freg];		switch (asi) {		case ASI_P:		case ASI_S: break;		case ASI_PL:		case ASI_SL: 			value = __swab64p(&value); break;		default: goto daex;		}		if (put_user (value >> 32, (u32 __user *) sfar) ||		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))			goto daex;	} else {daex:		data_access_exception(regs, sfsr, sfar);		return;	}	advance(regs);	return;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -