⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mm-armv.c

📁 优龙2410linux2.6.8内核源代码
💻 C
📖 第 1 页 / 共 2 页
字号:
{	struct cachepolicy *cp;	unsigned int cr = get_cr();	int cpu_arch = cpu_architecture();	int i;#if defined(CONFIG_CPU_DCACHE_DISABLE)	if (cachepolicy > CPOLICY_BUFFERED)		cachepolicy = CPOLICY_BUFFERED;#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)	if (cachepolicy > CPOLICY_WRITETHROUGH)		cachepolicy = CPOLICY_WRITETHROUGH;#endif	if (cpu_arch < CPU_ARCH_ARMv5) {		if (cachepolicy >= CPOLICY_WRITEALLOC)			cachepolicy = CPOLICY_WRITEBACK;		ecc_mask = 0;	}	if (cpu_arch <= CPU_ARCH_ARMv5) {		mem_types[MT_DEVICE].prot_l1       |= PMD_BIT4;		mem_types[MT_DEVICE].prot_sect     |= PMD_BIT4;		mem_types[MT_CACHECLEAN].prot_sect |= PMD_BIT4;		mem_types[MT_MINICLEAN].prot_sect  |= PMD_BIT4;		mem_types[MT_VECTORS].prot_l1      |= PMD_BIT4;		mem_types[MT_MEMORY].prot_sect     |= PMD_BIT4;	}	/*	 * ARMv6 and above have extended page tables.	 */	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {		/*		 * bit 4 becomes XN which we must clear for the		 * kernel memory mapping.		 */		mem_types[MT_MEMORY].prot_sect &= ~PMD_BIT4;		/*		 * Mark cache clean areas read only from SVC mode		 * and no access from userspace.		 */		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;	}	cp = &cache_policies[cachepolicy];	if (cpu_arch >= CPU_ARCH_ARMv5) {		mem_types[MT_VECTORS].prot_pte |= cp->pte & PTE_CACHEABLE;	} else {		mem_types[MT_VECTORS].prot_pte |= cp->pte;		mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1);	}	mem_types[MT_VECTORS].prot_l1 |= ecc_mask;	mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;	for (i = 0; i < 16; i++) {		unsigned long v = pgprot_val(protection_map[i]);		v &= (~(PTE_BUFFERABLE|PTE_CACHEABLE)) | cp->pte;		protection_map[i] = __pgprot(v);	}	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |				 L_PTE_DIRTY | L_PTE_WRITE |				 L_PTE_EXEC | cp->pte);	switch (cp->pmd) {	case PMD_SECT_WT:		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;		break;	case PMD_SECT_WB:	case PMD_SECT_WBWA:		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;		break;	}	printk("Memory policy: ECC %sabled, Data cache %s\n",		ecc_mask ? "en" : "dis", cp->policy);}/* * Create the page directory entries and any necessary * page tables for the mapping specified by `md'.  We * are able to cope here with varying sizes and address * offsets, and we take full advantage of sections. */static void __init create_mapping(struct map_desc *md){	unsigned long virt, length;	int prot_sect, prot_l1, domain;	pgprot_t prot_pte;	long off;	if (md->virtual != vectors_base() && md->virtual < PAGE_OFFSET) {		printk(KERN_WARNING "BUG: not creating mapping for "		       "0x%08lx at 0x%08lx in user region\n",		       md->physical, md->virtual);		return;	}	if (md->type == MT_DEVICE &&	    md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {		printk(KERN_WARNING "BUG: mapping for 0x%08lx at 0x%08lx "		       "overlaps vmalloc space\n",		       md->physical, md->virtual);	}	domain	  = mem_types[md->type].domain;	prot_pte  = __pgprot(mem_types[md->type].prot_pte);	prot_l1   = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain);	prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain);	virt   = md->virtual;	off    = md->physical - virt;	length = md->length;	if (mem_types[md->type].prot_l1 == 0 &&	    (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) {		printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "		       "be mapped using pages, ignoring.\n",		       md->physical, md->virtual);		return;	}	while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {		alloc_init_page(virt, virt + off, prot_l1, prot_pte);		virt   += PAGE_SIZE;		length -= PAGE_SIZE;	}	while (length >= (PGDIR_SIZE / 2)) {		alloc_init_section(virt, virt + off, prot_sect);		virt   += (PGDIR_SIZE / 2);		length -= (PGDIR_SIZE / 2);	}	while (length >= PAGE_SIZE) {		alloc_init_page(virt, virt + off, prot_l1, prot_pte);		virt   += PAGE_SIZE;		length -= PAGE_SIZE;	}}/* * In order to soft-boot, we need to insert a 1:1 mapping in place of * the user-mode pages.  This will then ensure that we have predictable * results when turning the mmu off */void setup_mm_for_reboot(char mode){	unsigned long pmdval;	pgd_t *pgd;	pmd_t *pmd;	int i;	int cpu_arch = cpu_architecture();	if (current->mm && current->mm->pgd)		pgd = current->mm->pgd;	else		pgd = init_mm.pgd;	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) {		pmdval = (i << PGDIR_SHIFT) |			 PMD_SECT_AP_WRITE | PMD_SECT_AP_READ |			 PMD_TYPE_SECT;		if (cpu_arch <= CPU_ARCH_ARMv5)			pmdval |= PMD_BIT4;		pmd = pmd_offset(pgd + i, i << PGDIR_SHIFT);		set_pmd(pmd, __pmd(pmdval));	}}/* * Setup initial mappings.  We use the page we allocated for zero page to hold * the mappings, which will get overwritten by the vectors in traps_init(). * The mappings must be in virtual address order. */void __init memtable_init(struct meminfo *mi){	struct map_desc *init_maps, *p, *q;	unsigned long address = 0;	int i;	build_mem_type_table();	init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE);	for (i = 0; i < mi->nr_banks; i++) {		if (mi->bank[i].size == 0)			continue;		p->physical   = mi->bank[i].start;		p->virtual    = __phys_to_virt(p->physical);		p->length     = mi->bank[i].size;		p->type       = MT_MEMORY;		p ++;	}#ifdef FLUSH_BASE	p->physical   = FLUSH_BASE_PHYS;	p->virtual    = FLUSH_BASE;	p->length     = PGDIR_SIZE;	p->type       = MT_CACHECLEAN;	p ++;#endif#ifdef FLUSH_BASE_MINICACHE	p->physical   = FLUSH_BASE_PHYS + PGDIR_SIZE;	p->virtual    = FLUSH_BASE_MINICACHE;	p->length     = PGDIR_SIZE;	p->type       = MT_MINICLEAN;	p ++;#endif	/*	 * Go through the initial mappings, but clear out any	 * pgdir entries that are not in the description.	 */	q = init_maps;	do {		if (address < q->virtual || q == p) {			clear_mapping(address);			address += PGDIR_SIZE;		} else {			create_mapping(q);			address = q->virtual + q->length;			address = (address + PGDIR_SIZE - 1) & PGDIR_MASK;			q ++;		}	} while (address != 0);	/*	 * Create a mapping for the machine vectors at virtual address 0	 * or 0xffff0000.  We should always try the high mapping.	 */	init_maps->physical   = virt_to_phys(init_maps);	init_maps->virtual    = vectors_base();	init_maps->length     = PAGE_SIZE;	init_maps->type       = MT_VECTORS;	create_mapping(init_maps);	flush_cache_all();	flush_tlb_all();}/* * Create the architecture specific mappings */void __init iotable_init(struct map_desc *io_desc, int nr){	int i;	for (i = 0; i < nr; i++)		create_mapping(io_desc + i);}static inline voidfree_memmap(int node, unsigned long start_pfn, unsigned long end_pfn){	struct page *start_pg, *end_pg;	unsigned long pg, pgend;	/*	 * Convert start_pfn/end_pfn to a struct page pointer.	 */	start_pg = pfn_to_page(start_pfn);	end_pg = pfn_to_page(end_pfn);	/*	 * Convert to physical addresses, and	 * round start upwards and end downwards.	 */	pg = PAGE_ALIGN(__pa(start_pg));	pgend = __pa(end_pg) & PAGE_MASK;	/*	 * If there are free pages between these,	 * free the section of the memmap array.	 */	if (pg < pgend)		free_bootmem_node(NODE_DATA(node), pg, pgend - pg);}static inline void free_unused_memmap_node(int node, struct meminfo *mi){	unsigned long bank_start, prev_bank_end = 0;	unsigned int i;	/*	 * [FIXME] This relies on each bank being in address order.  This	 * may not be the case, especially if the user has provided the	 * information on the command line.	 */	for (i = 0; i < mi->nr_banks; i++) {		if (mi->bank[i].size == 0 || mi->bank[i].node != node)			continue;		bank_start = mi->bank[i].start >> PAGE_SHIFT;		if (bank_start < prev_bank_end) {			printk(KERN_ERR "MEM: unordered memory banks.  "				"Not freeing memmap.\n");			break;		}		/*		 * If we had a previous bank, and there is a space		 * between the current bank and the previous, free it.		 */		if (prev_bank_end && prev_bank_end != bank_start)			free_memmap(node, prev_bank_end, bank_start);		prev_bank_end = PAGE_ALIGN(mi->bank[i].start +					   mi->bank[i].size) >> PAGE_SHIFT;	}}/* * The mem_map array can get very big.  Free * the unused area of the memory map. */void __init create_memmap_holes(struct meminfo *mi){	int node;	for (node = 0; node < numnodes; node++)		free_unused_memmap_node(node, mi);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -