📄 irq.c
字号:
/* * arch/v850/kernel/irq.c -- High-level interrupt handling * * Copyright (C) 2001,02,03,04 NEC Electronics Corporation * Copyright (C) 2001,02,03,04 Miles Bader <miles@gnu.org> * Copyright (C) 1994-2000 Ralf Baechle * Copyright (C) 1992 Linus Torvalds * * This file is subject to the terms and conditions of the GNU General * Public License. See the file COPYING in the main directory of this * archive for more details. * * This file was was derived from the mips version, arch/mips/kernel/irq.c */#include <linux/kernel.h>#include <linux/module.h>#include <linux/irq.h>#include <linux/init.h>#include <linux/interrupt.h>#include <linux/kernel_stat.h>#include <linux/slab.h>#include <linux/mm.h>#include <linux/random.h>#include <linux/seq_file.h>#include <asm/system.h>/* * Controller mappings for all interrupt sources: */irq_desc_t irq_desc[NR_IRQS] __cacheline_aligned = { [0 ... NR_IRQS-1] = { .handler = &no_irq_type, .lock = SPIN_LOCK_UNLOCKED }};/* * Special irq handlers. */irqreturn_t no_action(int cpl, void *dev_id, struct pt_regs *regs){ return IRQ_NONE;}/* * Generic no controller code */static void enable_none(unsigned int irq) { }static unsigned int startup_none(unsigned int irq) { return 0; }static void disable_none(unsigned int irq) { }static void ack_none(unsigned int irq){ /* * 'what should we do if we get a hw irq event on an illegal vector'. * each architecture has to answer this themselves, it doesn't deserve * a generic callback i think. */ printk("received IRQ %d with unknown interrupt type\n", irq);}/* startup is the same as "enable", shutdown is same as "disable" */#define shutdown_none disable_none#define end_none enable_nonestruct hw_interrupt_type no_irq_type = { "none", startup_none, shutdown_none, enable_none, disable_none, ack_none, end_none};volatile unsigned long irq_err_count, spurious_count;/* * Generic, controller-independent functions: */int show_interrupts(struct seq_file *p, void *v){ int i = *(loff_t *) v; struct irqaction * action; unsigned long flags; if (i == 0) { seq_puts(p, " "); for (i=0; i < 1 /*smp_num_cpus*/; i++) seq_printf(p, "CPU%d ", i); seq_putc(p, '\n'); } if (i < NR_IRQS) { int j, count, num; const char *type_name = irq_desc[i].handler->typename; spin_lock_irqsave(&irq_desc[j].lock, flags); action = irq_desc[i].action; if (!action) goto skip; count = 0; num = -1; for (j = 0; j < NR_IRQS; j++) if (irq_desc[j].handler->typename == type_name) { if (i == j) num = count; count++; } seq_printf(p, "%3d: ",i); seq_printf(p, "%10u ", kstat_irqs(i)); if (count > 1) { int prec = (num >= 100 ? 3 : num >= 10 ? 2 : 1); seq_printf(p, " %*s%d", 14 - prec, type_name, num); } else seq_printf(p, " %14s", type_name); seq_printf(p, " %s", action->name); for (action=action->next; action; action = action->next) seq_printf(p, ", %s", action->name); seq_putc(p, '\n');skip: spin_unlock_irqrestore(&irq_desc[j].lock, flags); } else if (i == NR_IRQS) seq_printf(p, "ERR: %10lu\n", irq_err_count); return 0;}/* * This should really return information about whether * we should do bottom half handling etc. Right now we * end up _always_ checking the bottom half, which is a * waste of time and is not what some drivers would * prefer. */int handle_IRQ_event(unsigned int irq, struct pt_regs * regs, struct irqaction * action){ int status = 1; /* Force the "do bottom halves" bit */ if (!(action->flags & SA_INTERRUPT)) local_irq_enable(); do { status |= action->flags; action->handler(irq, action->dev_id, regs); action = action->next; } while (action); if (status & SA_SAMPLE_RANDOM) add_interrupt_randomness(irq); local_irq_disable(); return status;}/* * Generic enable/disable code: this just calls * down into the PIC-specific version for the actual * hardware disable after having gotten the irq * controller lock. */ /** * disable_irq_nosync - disable an irq without waiting * @irq: Interrupt to disable * * Disable the selected interrupt line. Disables of an interrupt * stack. Unlike disable_irq(), this function does not ensure existing * instances of the IRQ handler have completed before returning. * * This function may be called from IRQ context. */ void inline disable_irq_nosync(unsigned int irq){ irq_desc_t *desc = irq_desc + irq; unsigned long flags; spin_lock_irqsave(&desc->lock, flags); if (!desc->depth++) { desc->status |= IRQ_DISABLED; desc->handler->disable(irq); } spin_unlock_irqrestore(&desc->lock, flags);}/** * disable_irq - disable an irq and wait for completion * @irq: Interrupt to disable * * Disable the selected interrupt line. Disables of an interrupt * stack. That is for two disables you need two enables. This * function waits for any pending IRQ handlers for this interrupt * to complete before returning. If you use this function while * holding a resource the IRQ handler may need you will deadlock. * * This function may be called - with care - from IRQ context. */ void disable_irq(unsigned int irq){ disable_irq_nosync(irq); synchronize_irq(irq);}/** * enable_irq - enable interrupt handling on an irq * @irq: Interrupt to enable * * Re-enables the processing of interrupts on this IRQ line * providing no disable_irq calls are now in effect. * * This function may be called from IRQ context. */ void enable_irq(unsigned int irq){ irq_desc_t *desc = irq_desc + irq; unsigned long flags; spin_lock_irqsave(&desc->lock, flags); switch (desc->depth) { case 1: { unsigned int status = desc->status & ~IRQ_DISABLED; desc->status = status; if ((status & (IRQ_PENDING | IRQ_REPLAY)) == IRQ_PENDING) { desc->status = status | IRQ_REPLAY; hw_resend_irq(desc->handler,irq); } desc->handler->enable(irq); /* fall-through */ } default: desc->depth--; break; case 0: printk("enable_irq(%u) unbalanced from %p\n", irq, __builtin_return_address(0)); } spin_unlock_irqrestore(&desc->lock, flags);}/* Handle interrupt IRQ. REGS are the registers at the time of ther interrupt. */unsigned int handle_irq (int irq, struct pt_regs *regs){ /* * We ack quickly, we don't want the irq controller * thinking we're snobs just because some other CPU has * disabled global interrupts (we have already done the * INT_ACK cycles, it's too late to try to pretend to the * controller that we aren't taking the interrupt). * * 0 return value means that this irq is already being * handled by some other CPU. (or is disabled) */ int cpu = smp_processor_id(); irq_desc_t *desc = irq_desc + irq; struct irqaction * action; unsigned int status; irq_enter(); kstat_cpu(cpu).irqs[irq]++; spin_lock(&desc->lock); desc->handler->ack(irq); /* REPLAY is when Linux resends an IRQ that was dropped earlier WAITING is used by probe to mark irqs that are being tested */ status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING); status |= IRQ_PENDING; /* we _want_ to handle it */ /* * If the IRQ is disabled for whatever reason, we cannot * use the action we have. */ action = NULL; if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) { action = desc->action; status &= ~IRQ_PENDING; /* we commit to handling */ status |= IRQ_INPROGRESS; /* we are handling it */ } desc->status = status; /* * If there is no IRQ handler or it was disabled, exit early. Since we set PENDING, if another processor is handling a different instance of this same irq, the other processor will take care of it. */ if (unlikely(!action)) goto out; /* * Edge triggered interrupts need to remember * pending events. * This applies to any hw interrupts that allow a second * instance of the same irq to arrive while we are in handle_irq * or in the handler. But the code here only handles the _second_ * instance of the irq, not the third or fourth. So it is mostly * useful for irq hardware that does not mask cleanly in an * SMP environment. */ for (;;) { spin_unlock(&desc->lock); handle_IRQ_event(irq, regs, action); spin_lock(&desc->lock); if (likely(!(desc->status & IRQ_PENDING))) break; desc->status &= ~IRQ_PENDING; } desc->status &= ~IRQ_INPROGRESS;out: /* * The ->end() handler has to deal with interrupts which got * disabled while the handler was running. */ desc->handler->end(irq); spin_unlock(&desc->lock); irq_exit(); return 1;}/** * request_irq - allocate an interrupt line * @irq: Interrupt line to allocate * @handler: Function to be called when the IRQ occurs * @irqflags: Interrupt type flags * @devname: An ascii name for the claiming device * @dev_id: A cookie passed back to the handler function * * This call allocates interrupt resources and enables the * interrupt line and IRQ handling. From the point this * call is made your handler function may be invoked. Since * your handler function must clear any interrupt the board * raises, you must take care both to initialise your hardware * and to set up the interrupt handler in the right order. * * Dev_id must be globally unique. Normally the address of the * device data structure is used as the cookie. Since the handler * receives this value it makes sense to use it. * * If your interrupt is shared you must pass a non NULL dev_id * as this is required when freeing the interrupt. * * Flags: * * SA_SHIRQ Interrupt is shared * * SA_INTERRUPT Disable local interrupts while processing * * SA_SAMPLE_RANDOM The interrupt can be used for entropy * */ int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *), unsigned long irqflags, const char * devname, void *dev_id){ int retval; struct irqaction * action;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -