⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pci.c

📁 优龙2410linux2.6.8内核源代码
💻 C
字号:
/* * pci.c - Low-Level PCI Access in IA-64 * * Derived from bios32.c of i386 tree. * * Copyright (C) 2002 Hewlett-Packard Co *	David Mosberger-Tang <davidm@hpl.hp.com> *	Bjorn Helgaas <bjorn_helgaas@hp.com> * * Note: Above list of copyright holders is incomplete... */#include <linux/config.h>#include <linux/acpi.h>#include <linux/types.h>#include <linux/kernel.h>#include <linux/pci.h>#include <linux/init.h>#include <linux/ioport.h>#include <linux/slab.h>#include <linux/smp_lock.h>#include <linux/spinlock.h>#include <asm/machvec.h>#include <asm/page.h>#include <asm/segment.h>#include <asm/system.h>#include <asm/io.h>#include <asm/sal.h>#ifdef CONFIG_SMP# include <asm/smp.h>#endif#include <asm/irq.h>#include <asm/hw_irq.h>#undef DEBUG#define DEBUG#ifdef DEBUG#define DBG(x...) printk(x)#else#define DBG(x...)#endifstruct pci_fixup pcibios_fixups[1];/* * Low-level SAL-based PCI configuration access functions. Note that SAL * calls are already serialized (via sal_lock), so we don't need another * synchronization mechanism here. */#define PCI_SAL_ADDRESS(seg, bus, devfn, reg)	\	((u64)(seg << 24) | (u64)(bus << 16) |	\	 (u64)(devfn << 8) | (u64)(reg))/* SAL 3.2 adds support for extended config space. */#define PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg)	\	((u64)(seg << 28) | (u64)(bus << 20) |		\	 (u64)(devfn << 12) | (u64)(reg))static intpci_sal_read (int seg, int bus, int devfn, int reg, int len, u32 *value){	u64 addr, mode, data = 0;	int result = 0;	if ((seg > 255) || (bus > 255) || (devfn > 255) || (reg > 4095))		return -EINVAL;	if ((seg | reg) <= 255) {		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);		mode = 0;	} else {		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);		mode = 1;	}	result = ia64_sal_pci_config_read(addr, mode, len, &data);	*value = (u32) data;	return result;}static intpci_sal_write (int seg, int bus, int devfn, int reg, int len, u32 value){	u64 addr, mode;	if ((seg > 65535) || (bus > 255) || (devfn > 255) || (reg > 4095))		return -EINVAL;	if ((seg | reg) <= 255) {		addr = PCI_SAL_ADDRESS(seg, bus, devfn, reg);		mode = 0;	} else {		addr = PCI_SAL_EXT_ADDRESS(seg, bus, devfn, reg);		mode = 1;	}	return ia64_sal_pci_config_write(addr, mode, len, value);}static struct pci_raw_ops pci_sal_ops = {	.read = 	pci_sal_read,	.write =	pci_sal_write};struct pci_raw_ops *raw_pci_ops = &pci_sal_ops;static intpci_read (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 *value){	return raw_pci_ops->read(pci_domain_nr(bus), bus->number,				 devfn, where, size, value);}static intpci_write (struct pci_bus *bus, unsigned int devfn, int where, int size, u32 value){	return raw_pci_ops->write(pci_domain_nr(bus), bus->number,				  devfn, where, size, value);}static struct pci_ops pci_root_ops = {	.read = pci_read,	.write = pci_write,};static int __initpci_acpi_init (void){	struct pci_dev *dev = NULL;	printk(KERN_INFO "PCI: Using ACPI for IRQ routing\n");	/*	 * PCI IRQ routing is set up by pci_enable_device(), but we	 * also do it here in case there are still broken drivers that	 * don't use pci_enable_device().	 */	while ((dev = pci_find_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL)		acpi_pci_irq_enable(dev);	return 0;}subsys_initcall(pci_acpi_init);/* Called by ACPI when it finds a new root bus.  */static struct pci_controller * __devinitalloc_pci_controller (int seg){	struct pci_controller *controller;	controller = kmalloc(sizeof(*controller), GFP_KERNEL);	if (!controller)		return NULL;	memset(controller, 0, sizeof(*controller));	controller->segment = seg;	return controller;}static int __devinitalloc_resource (char *name, struct resource *root, unsigned long start, unsigned long end,		unsigned long flags){	struct resource *res;	res = kmalloc(sizeof(*res), GFP_KERNEL);	if (!res)		return -ENOMEM;	memset(res, 0, sizeof(*res));	res->name = name;	res->start = start;	res->end = end;	res->flags = flags;	if (insert_resource(root, res))	{		kfree(res);		return -EBUSY;	}	return 0;}static u64 __devinitadd_io_space (struct acpi_resource_address64 *addr){	u64 offset;	int sparse = 0;	int i;	if (addr->address_translation_offset == 0)		return IO_SPACE_BASE(0);	/* part of legacy IO space */	if (addr->attribute.io.translation_attribute == ACPI_SPARSE_TRANSLATION)		sparse = 1;	offset = (u64) ioremap(addr->address_translation_offset, 0);	for (i = 0; i < num_io_spaces; i++)		if (io_space[i].mmio_base == offset &&		    io_space[i].sparse == sparse)			return IO_SPACE_BASE(i);	if (num_io_spaces == MAX_IO_SPACES) {		printk("Too many IO port spaces\n");		return ~0;	}	i = num_io_spaces++;	io_space[i].mmio_base = offset;	io_space[i].sparse = sparse;	return IO_SPACE_BASE(i);}static acpi_status __devinitcount_window (struct acpi_resource *resource, void *data){	unsigned int *windows = (unsigned int *) data;	struct acpi_resource_address64 addr;	acpi_status status;	status = acpi_resource_to_address64(resource, &addr);	if (ACPI_SUCCESS(status))		if (addr.resource_type == ACPI_MEMORY_RANGE ||		    addr.resource_type == ACPI_IO_RANGE)			(*windows)++;	return AE_OK;}struct pci_root_info {	struct pci_controller *controller;	char *name;};static acpi_status __devinitadd_window (struct acpi_resource *res, void *data){	struct pci_root_info *info = (struct pci_root_info *) data;	struct pci_window *window;	struct acpi_resource_address64 addr;	acpi_status status;	unsigned long flags, offset = 0;	struct resource *root;	status = acpi_resource_to_address64(res, &addr);	if (ACPI_SUCCESS(status)) {		if (!addr.address_length)			return AE_OK;		if (addr.resource_type == ACPI_MEMORY_RANGE) {			flags = IORESOURCE_MEM;			root = &iomem_resource;			offset = addr.address_translation_offset;		} else if (addr.resource_type == ACPI_IO_RANGE) {			flags = IORESOURCE_IO;			root = &ioport_resource;			offset = add_io_space(&addr);			if (offset == ~0)				return AE_OK;		} else			return AE_OK;		window = &info->controller->window[info->controller->windows++];		window->resource.flags |= flags;		window->resource.start  = addr.min_address_range;		window->resource.end    = addr.max_address_range;		window->offset		= offset;		if (alloc_resource(info->name, root, addr.min_address_range + offset,			addr.max_address_range + offset, flags))			printk(KERN_ERR "alloc 0x%lx-0x%lx from %s for %s failed\n",				addr.min_address_range + offset, addr.max_address_range + offset,				root->name, info->name);	}	return AE_OK;}struct pci_bus * __devinitpci_acpi_scan_root (struct acpi_device *device, int domain, int bus){	struct pci_root_info info;	struct pci_controller *controller;	unsigned int windows = 0;	char *name;	controller = alloc_pci_controller(domain);	if (!controller)		goto out1;	controller->acpi_handle = device->handle;	acpi_walk_resources(device->handle, METHOD_NAME__CRS, count_window, &windows);	controller->window = kmalloc(sizeof(*controller->window) * windows, GFP_KERNEL);	if (!controller->window)		goto out2;	name = kmalloc(16, GFP_KERNEL);	if (!name)		goto out3;	sprintf(name, "PCI Bus %04x:%02x", domain, bus);	info.controller = controller;	info.name = name;	acpi_walk_resources(device->handle, METHOD_NAME__CRS, add_window, &info);	return pci_scan_bus(bus, &pci_root_ops, controller);out3:	kfree(controller->window);out2:	kfree(controller);out1:	return NULL;}void __initpcibios_fixup_device_resources (struct pci_dev *dev, struct pci_bus *bus){	struct pci_controller *controller = PCI_CONTROLLER(dev);	struct pci_window *window;	int i, j;	int limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ? \		PCI_ROM_RESOURCE : PCI_NUM_RESOURCES;	for (i = 0; i < limit; i++) {		if (!dev->resource[i].start)			continue;#define contains(win, res)	((res)->start >= (win)->start && \				 (res)->end   <= (win)->end)		for (j = 0; j < controller->windows; j++) {			window = &controller->window[j];			if (((dev->resource[i].flags & IORESOURCE_MEM &&			      window->resource.flags & IORESOURCE_MEM) ||			     (dev->resource[i].flags & IORESOURCE_IO &&			      window->resource.flags & IORESOURCE_IO)) &&			    contains(&window->resource, &dev->resource[i])) {				dev->resource[i].start += window->offset;				dev->resource[i].end   += window->offset;			}		}		pci_claim_resource(dev, i);	}}/* *  Called after each bus is probed, but before its children are examined. */void __devinitpcibios_fixup_bus (struct pci_bus *b){	struct list_head *ln;	for (ln = b->devices.next; ln != &b->devices; ln = ln->next)		pcibios_fixup_device_resources(pci_dev_b(ln), b);	return;}void __devinitpcibios_update_irq (struct pci_dev *dev, int irq){	pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);	/* ??? FIXME -- record old value for shutdown.  */}static inline intpcibios_enable_resources (struct pci_dev *dev, int mask){	u16 cmd, old_cmd;	int idx;	struct resource *r;	if (!dev)		return -EINVAL;	pci_read_config_word(dev, PCI_COMMAND, &cmd);	old_cmd = cmd;	for (idx=0; idx<6; idx++) {		/* Only set up the desired resources.  */		if (!(mask & (1 << idx)))			continue;		r = &dev->resource[idx];		if (!r->start && r->end) {			printk(KERN_ERR			       "PCI: Device %s not available because of resource collisions\n",			       pci_name(dev));			return -EINVAL;		}		if (r->flags & IORESOURCE_IO)			cmd |= PCI_COMMAND_IO;		if (r->flags & IORESOURCE_MEM)			cmd |= PCI_COMMAND_MEMORY;	}	if (dev->resource[PCI_ROM_RESOURCE].start)		cmd |= PCI_COMMAND_MEMORY;	if (cmd != old_cmd) {		printk("PCI: Enabling device %s (%04x -> %04x)\n", pci_name(dev), old_cmd, cmd);		pci_write_config_word(dev, PCI_COMMAND, cmd);	}	return 0;}intpcibios_enable_device (struct pci_dev *dev, int mask){	int ret;	ret = pcibios_enable_resources(dev, mask);	if (ret < 0)		return ret;	return acpi_pci_irq_enable(dev);}voidpcibios_align_resource (void *data, struct resource *res,		        unsigned long size, unsigned long align){}/* * PCI BIOS setup, always defaults to SAL interface */char * __initpcibios_setup (char *str){	return NULL;}intpci_mmap_page_range (struct pci_dev *dev, struct vm_area_struct *vma,		     enum pci_mmap_state mmap_state, int write_combine){	/*	 * I/O space cannot be accessed via normal processor loads and stores on this	 * platform.	 */	if (mmap_state == pci_mmap_io)		/*		 * XXX we could relax this for I/O spaces for which ACPI indicates that		 * the space is 1-to-1 mapped.  But at the moment, we don't support		 * multiple PCI address spaces and the legacy I/O space is not 1-to-1		 * mapped, so this is moot.		 */		return -EINVAL;	/*	 * Leave vm_pgoff as-is, the PCI space address is the physical address on this	 * platform.	 */	vma->vm_flags |= (VM_SHM | VM_LOCKED | VM_IO);	if (write_combine)		vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);	else		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);	if (remap_page_range(vma, vma->vm_start, vma->vm_pgoff << PAGE_SHIFT,			     vma->vm_end - vma->vm_start, vma->vm_page_prot))		return -EAGAIN;	return 0;}/** * pci_cacheline_size - determine cacheline size for PCI devices * @dev: void * * We want to use the line-size of the outer-most cache.  We assume * that this line-size is the same for all CPUs. * * Code mostly taken from arch/ia64/kernel/palinfo.c:cache_info(). * * RETURNS: An appropriate -ERRNO error value on eror, or zero for success. */static unsigned longpci_cacheline_size (void){	u64 levels, unique_caches;	s64 status;	pal_cache_config_info_t cci;	static u8 cacheline_size;	if (cacheline_size)		return cacheline_size;	status = ia64_pal_cache_summary(&levels, &unique_caches);	if (status != 0) {		printk(KERN_ERR "%s: ia64_pal_cache_summary() failed (status=%ld)\n",		       __FUNCTION__, status);		return SMP_CACHE_BYTES;	}	status = ia64_pal_cache_config_info(levels - 1, /* cache_type (data_or_unified)= */ 2,					    &cci);	if (status != 0) {		printk(KERN_ERR "%s: ia64_pal_cache_config_info() failed (status=%ld)\n",		       __FUNCTION__, status);		return SMP_CACHE_BYTES;	}	cacheline_size = 1 << cci.pcci_line_size;	return cacheline_size;}/** * pcibios_prep_mwi - helper function for drivers/pci/pci.c:pci_set_mwi() * @dev: the PCI device for which MWI is enabled * * For ia64, we can get the cacheline sizes from PAL. * * RETURNS: An appropriate -ERRNO error value on eror, or zero for success. */intpcibios_prep_mwi (struct pci_dev *dev){	unsigned long desired_linesize, current_linesize;	int rc = 0;	u8 pci_linesize;	desired_linesize = pci_cacheline_size();	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &pci_linesize);	current_linesize = 4 * pci_linesize;	if (desired_linesize != current_linesize) {		printk(KERN_WARNING "PCI: slot %s has incorrect PCI cache line size of %lu bytes,",		       pci_name(dev), current_linesize);		if (current_linesize > desired_linesize) {			printk(" expected %lu bytes instead\n", desired_linesize);			rc = -EINVAL;		} else {			printk(" correcting to %lu\n", desired_linesize);			pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, desired_linesize / 4);		}	}	return rc;}int pci_vector_resources(int last, int nr_released){	int count = nr_released; 	count += (IA64_LAST_DEVICE_VECTOR - last);	return count;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -