📄 strmctxt.h
字号:
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
//
// Use of this sample source code is subject to the terms of the Microsoft
// license agreement under which you licensed this sample source code. If
// you did not accept the terms of the license agreement, you are not
// authorized to use this sample source code. For the terms of the license,
// please see the license agreement between you and Microsoft or, if applicable,
// see the LICENSE.RTF on your install media or the root of your tools installation.
// THE SAMPLE SOURCE CODE IS PROVIDED "AS IS", WITH NO WARRANTIES.
//
// Portions Copyright (c) Texas Instruments. All rights reserved.
//
//------------------------------------------------------------------------------
//
#pragma once
#define VOLSHIFT (32-BITSPERSAMPLE)
#ifdef __cplusplus
extern "C" {
#endif
#ifdef DEBUG
#define ZONE_AC DEBUGZONE(0)
#define ZONE_PARAMS DEBUGZONE(1)
#define ZONE_VERBOSE DEBUGZONE(2)
#define ZONE_IRQ DEBUGZONE(3)
#define ZONE_WODM DEBUGZONE(4)
#define ZONE_WIDM DEBUGZONE(5)
#define ZONE_PDD DEBUGZONE(6)
#define ZONE_MDD DEBUGZONE(7)
#define ZONE_DMA DEBUGZONE(8)
#define ZONE_MISC DEBUGZONE(9)
#define ZONE_MIDI DEBUGZONE(10)
#define ZONE_MODEM DEBUGZONE(11)
#define ZONE_POWER DEBUGZONE(12)
#define ZONE_FUNCTION DEBUGZONE(13)
#define ZONE_WARN DEBUGZONE(14)
#define ZONE_ERROR DEBUGZONE(15)
#endif
#ifdef __cplusplus
}
#endif
// Define the format of the m_Delta value. By default, we'll use
// 17.15 format. This may seem weird, but there's a problem using
// 16.16 format with the SRC code-- in the following equation where
// we use the fractional part to calculate the interpolated sample:
// OutSamp0 = PrevSamp0 + (((CurrSamp0 - PrevSamp0) * CurrT) >> DELTAFRAC);
// If CurrT is a 16-bit fraction value, and if (CurrSamp0-PrevSamp0) overflow a
// signed 16-bit number (which they can), then the result can overflow a 32-bit
// value and cause a click.
// We could use 64-bit math to overcome that, but it would be a few extra instructions in the inner loop.
//
// On the other hand, we want as much accuracy in the fractional part as possible,
// as that determines how close we are to the target rate during sample rate conversion.
// Therefore, using 17.15 format is the best we can do.
#define DELTAINT (17) // was 24
#define DELTAFRAC (32 - DELTAINT)
// Define 1.0 value for Delta
#define DELTA_OVERFLOW (1<<DELTAFRAC) // was 0x100
class StreamContext
{
public:
LIST_ENTRY m_Link; // Link into list of streams
StreamContext() {};
virtual ~StreamContext() {};
LONG AddRef();
LONG Release();
virtual HRESULT Open(DeviceContext *pDeviceContext, LPWAVEOPENDESC lpWOD, DWORD dwFlags);
virtual DWORD Close();
virtual DWORD GetPos(PMMTIME pmmt);
virtual DWORD Run();
virtual DWORD Stop();
virtual DWORD Reset();
virtual PBYTE Render(PBYTE pBuffer, PBYTE pBufferEnd, PBYTE pBufferLast)=0;
BOOL StillPlaying() {return (m_lpWaveHdrHead!=NULL);}
DWORD GetByteCount() {return m_dwByteCount;}
WAVEFORMATEX *GetWaveFormat() {return &m_WaveFormat;}
DeviceContext *GetDeviceContext() { return m_pDeviceContext; }
void DoDriverCallback(UINT msg, DWORD dwParam1, DWORD dwParam2)
{
m_pfnCallback(m_hWave,msg,m_dwInstance,dwParam1,dwParam2);
}
virtual void DoCallbackReturnBuffer(LPWAVEHDR lpHdr)
{
DoDriverCallback(WOM_DONE,(DWORD)lpHdr,0);
}
virtual void DoCallbackStreamOpened()
{
g_pHWContext->OutputStreamOpened();
DEBUGMSG(ZONE_WODM && ZONE_VERBOSE,(TEXT("WODM: DoCallbackStreamOpened\r\n")));
DoDriverCallback(WOM_OPEN,0,0);
}
virtual void DoCallbackStreamClosed()
{
g_pHWContext->OutputStreamClosed();
DEBUGMSG(ZONE_WODM && ZONE_VERBOSE,(TEXT("WODM: DoCallbackStreamClosed\r\n")));
DoDriverCallback(WOM_CLOSE,0,0);
}
virtual DWORD QueueBuffer(LPWAVEHDR lpWaveHdr);
PBYTE GetNextBuffer();
// Default implementation
void ReturnBuffer(LPWAVEHDR lpHdr)
{
lpHdr->dwFlags &= ~WHDR_INQUEUE;
lpHdr->dwFlags |= WHDR_DONE;
DEBUGMSG(ZONE_WODM && ZONE_VERBOSE,(TEXT("WODM: DoCallbackStreamClosed\r\n")));
DoCallbackReturnBuffer(lpHdr);
}
DWORD GetGain()
{
return m_dwGain;
}
DWORD SetGain(DWORD dwGain)
{
m_dwGain = dwGain;
GainChange();
return MMSYSERR_NOERROR;
}
DWORD SetSecondaryGainClass(DWORD GainClass)
{
if (GainClass>=SECONDARYGAINCLASSMAX)
{
return MMSYSERR_ERROR;
}
m_SecondaryGainClass=GainClass;
GainChange();
return MMSYSERR_NOERROR;
}
DWORD MapGain(DWORD Gain);
virtual void GainChange()
{
m_fxpGain = MapGain(m_dwGain);
}
static void ClearBuffer(PBYTE pStart, PBYTE pEnd) {memset(pStart,0,pEnd-pStart);}
DWORD BreakLoop();
DWORD ForceSpeaker (BOOL bForceSpeaker);
protected:
LONG m_RefCount;
BOOL m_bRunning; // Is stream running or stopped
DWORD m_dwFlags; // allocation flags
HWAVE m_hWave; // handle for stream
DRVCALLBACK* m_pfnCallback; // client's callback
DWORD m_dwInstance; // client's instance data
WAVEFORMATEX m_WaveFormat; // Format of wave data
LPWAVEHDR m_lpWaveHdrHead;
LPWAVEHDR m_lpWaveHdrCurrent;
LPWAVEHDR m_lpWaveHdrTail;
PBYTE m_lpCurrData; // position in current buffer
PBYTE m_lpCurrDataEnd; // end of current buffer
DWORD m_dwByteCount; // byte count since last reset
DeviceContext * m_pDeviceContext; // Device which this stream renders to
// Loopcount shouldn't really be here, since it's really for wave output only, but it makes things easier
DWORD m_dwLoopCount; // Number of times left through loop
DWORD m_dwGain;
DWORD m_SecondaryGainClass;
DWORD m_fxpGain;
BOOL m_bForceSpeaker;
};
class WaveStreamContext : public StreamContext
{
public:
virtual HRESULT Open(DeviceContext *pDeviceContext, LPWAVEOPENDESC lpWOD, DWORD dwFlags);
DWORD GetRate(DWORD *pdwMultiplier);
virtual DWORD SetRate(DWORD dwMultiplier) = 0;
PBYTE Render(PBYTE pBuffer, PBYTE pBufferEnd, PBYTE pBufferLast);
virtual PBYTE Render2(PBYTE pBuffer, PBYTE pBufferEnd, PBYTE pBufferLast)=0;
protected:
PCM_TYPE m_SampleType; // Enum of sample type, e.g. M8, M16, S8, S16
ULONG m_SampleSize; // # of bytes per sample in client buffer
DWORD m_DeltaT; // Sample rate conversion factor
DWORD m_dwMultiplier;
LONG m_PrevSamp[OUTCHANNELS];
LONG m_CurrSamp[OUTCHANNELS];
LONG m_CurrT;
};
class InputStreamContext : public WaveStreamContext
{
public:
HRESULT Open(DeviceContext *pDeviceContext, LPWAVEOPENDESC lpWOD, DWORD dwFlags);
DWORD SetRate(DWORD dwMultiplier);
DWORD Stop(); // On input, stop has special handling
PBYTE Render2(PBYTE pBuffer, PBYTE pBufferEnd, PBYTE pBufferLast);
virtual void DoCallbackReturnBuffer(LPWAVEHDR lpHdr)
{
DEBUGMSG(ZONE_WIDM && ZONE_VERBOSE,(TEXT("WIDM: DoCallbackReturnBuffer\r\n")));
DoDriverCallback(WIM_DATA,(DWORD)lpHdr,0);
}
virtual void DoCallbackStreamOpened()
{
g_pHWContext->InputStreamOpened();
DEBUGMSG(ZONE_WIDM && ZONE_VERBOSE,(TEXT("WIDM: DoCallbackStreamOpened\r\n")));
DoDriverCallback(WIM_OPEN,0,0);
}
virtual void DoCallbackStreamClosed()
{
g_pHWContext->InputStreamClosed();
DEBUGMSG(ZONE_WIDM && ZONE_VERBOSE,(TEXT("WIDM: DoCallbackStreamOpened\r\n")));
DoDriverCallback(WIM_CLOSE,0,0);
}
};
class OutputStreamContext : public WaveStreamContext
{
public:
HRESULT Open(DeviceContext *pDeviceContext, LPWAVEOPENDESC lpWOD, DWORD dwFlags);
DWORD Reset();
DWORD SetRate(DWORD dwMultiplier);
};
class OutputStreamContextM8 : public OutputStreamContext
{
public:
PBYTE Render2(PBYTE pBuffer, PBYTE pBufferEnd, PBYTE pBufferLast);
};
class OutputStreamContextM16 : public OutputStreamContext
{
public:
PBYTE Render2(PBYTE pBuffer, PBYTE pBufferEnd, PBYTE pBufferLast);
};
class OutputStreamContextS8 : public OutputStreamContext
{
public:
PBYTE Render2(PBYTE pBuffer, PBYTE pBufferEnd, PBYTE pBufferLast);
};
class OutputStreamContextS16 : public OutputStreamContext
{
public:
PBYTE Render2(PBYTE pBuffer, PBYTE pBufferEnd, PBYTE pBufferLast);
};
// CAutoLock helper class
class CAutoLock
{
public:
CAutoLock (CRITICAL_SECTION * cs)
{
pcs = cs;
EnterCriticalSection(pcs);
}
~CAutoLock ()
{
LeaveCriticalSection(pcs);
}
private:
CRITICAL_SECTION * pcs;
};
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -