⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fetch.cc

📁 linux下基于c++的处理器仿真平台。具有处理器流水线
💻 CC
📖 第 1 页 / 共 4 页
字号:
	/*  itterate through the fetch list  */	for (int j = 0; j < SMT_MAX_THREADS; j++) {	    int thread = fetch_list[j].thread_number;	    /*  look for this thread number in the active list  */	    for (int i = 0; i < active_index; i++) {		/*  If it's in the active list,		 *  Put it into the temporary list so we can sort it		 */		if (active_list[i] == thread) {		    temp_list[templist_index] = fetch_list[j];		    /*  Must make sure that we have the latest			priority information  */		    temp_list[templist_index].priority =			thread_info[thread].priority;		    templist_index++;		}	    }	}	/*  RR policy requires these threads to be sorted into	 * descending priority order */	if (fetch_policy == RR)	    qsort(temp_list,templist_index,		  sizeof(ThreadListElement),rr_compare);	/* put the inactive entries into the temp list */	for (int i = 0; i < inactive_index; i++)	    for (int j = 0; j < SMT_MAX_THREADS; j++)		if (fetch_list[j].thread_number == inactive_list[i])		    temp_list[templist_index++] = fetch_list[j];	/* copy back to the real list */	for (int i = 0; i < SMT_MAX_THREADS; i++)	    fetch_list[i] = temp_list[i];    }}voidFullCPU::change_thread_state(int thread_number, int activate, int priority){    // override specified priority if prioritization disabled via option    if (!fetch_priority_enable)	priority = 100;    thread_info[thread_number].priority = priority;    /*  look for thread in the fetch list  */    int ptr = -1;    for (int i = 0; i < number_of_threads; i++)	if (fetch_list[i].thread_number == thread_number)	    ptr = i;    /*  ptr >= 0 if we found it  */    if (ptr >= 0) {	thread_info[thread_number].active = activate;	thread_info[thread_number].priority = priority;	fetch_list[ptr].priority = priority;	if (fetch_policy == RR)	    fetch_list[ptr].sort_key = priority;    } else	panic("fetch list is screwed up!");    /*  make sure that the fetch list is kosher  */    initialize_fetch_list(false);}/*  Remove all instructions from a specific thread from the fetch queue  */voidFullCPU::fetch_squash(int thread_number){    icache_output_buffer[thread_number]->squash(thread_number);    // free ifq slots reserved for icache_output_buffer insts    if (mt_frontend)        ifq[thread_number].squash();    else        ifq[0].squash(thread_number);    icacheInterface->squash(thread_number);}/* initialize the instruction fetch pipeline stage */voidFullCPU::fetch_init(){    icache_block_size = icacheInterface->getBlockSize();    insts_per_block = icache_block_size / TheISA::fetchInstSize();    for (int i = 0; i < number_of_threads; i++) {        /* allocate the IFETCH -> DISPATCH instruction queue */        if (!mt_frontend) {            if (i == 0)                ifq[0].init(this, ifq_size, number_of_threads);        }        else            ifq[i].init(this, ifq_size, i);	icache_output_buffer[i] = new IcacheOutputBuffer;        icache_output_buffer[i]->init(fetch_width, i);	fetch_stall[i] = 0;	fetch_fault_count[i] = 0;    }}voidFullCPU::clear_fetch_stall(Tick when, int thread_number, int stall_type){    if (fetch_stall[thread_number] == stall_type) {	fetch_stall[thread_number] = 0;    }}// ===========================================================================////  Events used here//voidClearFetchStallEvent::process(){    cpu->clear_fetch_stall(curTick, thread_number, stall_type);    delete this;}const char *ClearFetchStallEvent::description(){    return "clear fetch stall";}voidFetchCompleteEvent::process(){    IcacheOutputBuffer *bufferp;    IcacheOutputBufferEntry *entryp;    int index = first_index;    bufferp = cpu->icache_output_buffer[thread_number];    // checkmshrp->targets[target_idx]. to see if first instruction is    // still valid    entryp = &(bufferp->insts[first_index]);    if (!entryp->inst || entryp->inst->fetch_seq != first_seq_num) {	// squashed! no point in continuing, as any squash will	// eliminate the whole group of instrs	goto done;    }    // are the instrs we fetched at the head of the buffer?  if so,    // we'll want to copy them to the ifq as we go.  if we allow    // multiple fetches on the same thread and they complete out of    // order, this may not be the case.    if (first_index == bufferp->head) {	for (int i = 0; i < num_insts; ++i) {	    entryp = &bufferp->insts[index];            if (cpu->mt_frontend) {                cpu->ifq[entryp->inst->thread_number].append(entryp->inst);            } else {                cpu->ifq[0].append(entryp->inst);            }	    entryp->inst = NULL;	    index = bufferp->incr(index);	}	// now copy any succeeding ready instrs (that were the result	// of an out-of-order fetch completion) to the ifq	while (entryp = &bufferp->insts[index], entryp->ready) {            if (cpu->mt_frontend) {                cpu->ifq[entryp->inst->thread_number].append(entryp->inst);            } else {                cpu->ifq[0].append(entryp->inst);            }	    entryp->ready = false;	    entryp->inst = NULL;	    ++num_insts;	    index = bufferp->incr(index);	}	// update head & num_insts to reflect instrs copied to ifq	bufferp->head = index;	bufferp->num_insts -= num_insts;	assert(bufferp->num_insts >= 0);    } else {	// just mak instrs as ready until preceding instrs complete fetch	for (int i = 0; i < num_insts; ++i) {	    entryp = &(bufferp->insts[index]);	    entryp->ready = true;	    index = bufferp->incr(index);	}    }  done:    delete this;}const char *FetchCompleteEvent::description(){    return "fetch complete";}// ===========================================================================/** * Fetch one instruction from functional memory and execute it * functionally. * * @param thread_number Thread ID to fetch from. * @return A pair consisting of a pointer to a newly * allocated DynInst record and a fault code.  The DynInst pointer may * be NULL if the fetch was unsuccessful.  The fault code may reflect a * fault caused by the fetch itself (e.g., ITLB miss trap), or on the * functional execution.  The fault code will be No_Fault if no * fault was encountered. */pair<DynInst *, Fault>FullCPU::fetchOneInst(int thread_number){    SpecExecContext *xc = thread[thread_number];    Addr pc = xc->regs.pc;    // fetch instruction from *functional* memory into IR so we can    // look at it    MachInst IR;	// instruction register#if FULL_SYSTEM#define IFETCH_FLAGS(pc)	((pc) & 1) ? PHYSICAL : 0#else#define IFETCH_FLAGS(pc)	0#endif    MemReqPtr req = new MemReq(pc & ~(Addr)3, xc, sizeof(MachInst),			       IFETCH_FLAGS(pc));    req->flags |= INST_READ;    req->pc = pc;    /**     * @todo     * Need to set asid correctly once we put in a unified memory system.     */    // Need to make sure asid is 0 so functional memory works correctly    req->asid = 0;    Fault fetch_fault = xc->translateInstReq(req);#if FULL_SYSTEM    if (xc->spec_mode &&	(fetch_fault != No_Fault || (req->flags & UNCACHEABLE) ||	 xc->memctrl->badaddr(req->paddr))) {	// Bad things can happen on misspeculated accesses to bad	// or uncached addresses...  stop now before it's too late	return make_pair((DynInst *)NULL, No_Fault);    }#endif    if (fetch_fault == No_Fault) {	// translation succeeded... attempt access	fetch_fault = xc->mem->read(req, IR);    }    if (fetch_fault != No_Fault) {#if FULL_SYSTEM	assert(!xc->spec_mode);	xc->ev5_trap(fetch_fault);	// couldn't fetch real instruction, so replace it with a noop	IR = TheISA::NoopMachInst;#else	fatal("Bad translation on instruction fetch, vaddr = 0x%x",	      req->vaddr);#endif    }    StaticInstPtr<TheISA> si(IR);    // If SWP_SQUASH is set, filter out SW prefetch instructions right    // away; we don't want them to even count against our fetch    // bandwidth limit.    if (softwarePrefetchPolicy == SWP_SQUASH && si->isDataPrefetch()) {	xc->regs.pc += sizeof(MachInst);	// need this for EIO syscall checking	if (!xc->spec_mode)	    xc->func_exe_inst++;	exe_swp[thread_number]++;	// next instruction instead by calling fetchOneInst()	// again recursively	return fetchOneInst(thread_number);    }    //    // Allocate a DynInst object and populate it    //    DynInst *inst = new DynInst(si);    inst->fetch_seq = next_fetch_seq++;    inst->PC = pc;    inst->thread_number = thread_number;    inst->asid = thread[thread_number]->getDataAsid();    inst->cpu = this;    inst->xc = xc;    inst->fault = fetch_fault;    inst->spec_mode = xc->spec_mode;    inst->trace_data = Trace::getInstRecord(curTick, xc, this,					    inst->staticInst,					    xc->regs.pc, thread_number);    inst->correctPathSeq = (xc->spec_mode == 0) ? correctPathSeq[thread_number]++ : 0;    // Predict next PC to fetch.    // default guess: sequential    inst->Pred_PC = pc + sizeof(MachInst);    if (inst->isControl()) {	// it's a control-flow instruction: check with predictor	// FIXME: This should be a compressed fetch_address	BranchPred::LookupResult result;	if (branch_pred) {	  result =	    branch_pred->lookup(thread_number, pc, inst->staticInst,				&inst->Pred_PC, &inst->dir_update);	  // The old branch predictor interface used a predicted PC of 0	  // to indicate Predict_Not_Taken.  In some rare cases (e.g.,	  // underflow of an uninitialized return address stack), the	  // predictor will predict taken but provided a predicted	  // target of 0.  With the old interface, this was	  // misinterpreted as a not-taken prediction.  Since the new	  // predictor interface actually distinguishes these cases, it	  // gets slightly different misspeculation behavior, leading to	  // slightly different results.  For exact emulation of the old	  // behavior, uncomment the code below.	  //	  // if (inst->Pred_PC == 0) {	  //     inst->Pred_PC = pc + sizeof(MachInst);	  //     result = BranchPred::Predict_Not_Taken;	  // }	  inst->btb_missed = (result == BranchPred::Predict_Taken_No_Target);	} else {	  // Do perfect branch prediction	  // We can't set this yet.	  //inst->Pred_PC = inst->Next_PC;	  inst->btb_missed = false;	}    }    /********************************************************/    /*                                                      */    /*   Fill in the fetch queue entry                      */    /*                                                      */    /********************************************************/    IcacheOutputBufferEntry *buf_entry =	icache_output_buffer[thread_number]->new_tail();    buf_entry->inst = inst;    buf_entry->ready = false;    if (mt_frontend) {	ifq[thread_number].reserve(thread_number);	assert(ifq[thread_number].num_total() <= ifq_size);    } else {	ifq[0].reserve(thread_number);	assert(ifq[0].num_total() <= ifq_size);    }    /**********************************************************/    /*                                                        */    /*   Execute this instruction.			      */    /*                                                        */    /**********************************************************/    if (inst->fault == No_Fault)	inst->fault = execute_instruction(inst, thread_number);    if (inst->fault != No_Fault)	return make_pair(inst, inst->fault);    if (!branch_pred) {      // Do perfect branch prediction      inst->Pred_PC = inst->Next_PC;    }    //    // Update execution context's PC to point to next instruction to    // fetch (based on predicted next PC).    //    //    //  Pipe-tracing...    //    //  This doesn't quite work the way we might want it:    //    - The fourth parameter (latency) is supposed to indicate the    //      cache miss delay...    //    - The fifth parameter (longest latency event) is designed    //      to indicate which of several events took the longest...    //      since our model doesn't generate events, this    //      isn't used here either.    //    if (ptrace) {	ptrace->newInst(inst);	ptrace->moveInst(inst, PipeTrace::Fetch, 0, 0, 0);    }    /*     *   Handle the transition "into" mis-speculative mode     *   (note that we may _already_ be misspeculating)     *     *   There are two "forms" of misspeculation that we have to     *   deal with:     *     (1) Mispredicting the direction of a branch     *     (2) Mispredicting the     */    if (inst->Pred_PC != inst->Next_PC) {	// Conflicting maps are also recover insts, but why?  Perhaps	// because all of the aliased registers are updated?  But	// that shouldn't matter for a renaming machine with the LRT.	// Ah, except the LRT won't be updated until the map executes,	// which is too late.	inst->recover_inst = true;	xc->spec_mode++;    }    return make_pair(inst, No_Fault);}/** * Fetch several instructions (up to a full cache line) from * functional memory and execute them functionally (by calling * fetchOneInst()).  Fetching will cease if the end of the current * cache line is reached, a predicted-taken branch is encountered, a * fault occurs, the fetch queue fills up, or the CPU parameter limits * on instructions or branches per cycle are reached.  In the first * two cases, fetching can continue for this thread in this cycle in * another block; in the remaining cases, fetching for this thread * must be terminated for this cycle. * * @param thread_number Thread ID to fetch from. * @param max_to_fetch Maximum number of instructions to fetch. * @param branch_cnt Reference to number of branches fetched this cycle * for the current thread.  This value will be updated if any branches * are fetched. * @return A pair combining an integer indicating * the number of instructions fetched and a boolean indicating whether * fetching on the current thread should continue. */pair<int, bool>FullCPU::fetchOneLine(int thread_number, int max_to_fetch, int &branch_cnt,		      bool entering_interrupt){    SpecExecContext *xc = thread[thread_number];    int num_fetched = 0;    // remember start address of current line, so we can tell if we

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -