📄 gradient_vector_linear_direct.m
字号:
function [gradient]=gradient_vector_linear_direct(w,data)
% This function returns the gradient vecotr to be used by the nonlinear
% conjugate gradient.
%
% This is the exact version which scales as $$O(N^2)$$.
%
%% Input
%
% * w ... d x 1 weight vector
% * data ... structure containing the data regarding the ranking task at hand [See convert_data_to_ranking_format.m]
% Has one extra parameter data.lambda, the regularization parameter
%
%% Ouput
%
% * gradient ... d x 1 gradient vector evaluated at w
%
%% Signature
%
% Author: Vikas Chandrakant Raykar
% E-Mail: vikas@cs.umd.edu
% Date: September 27, 2006
%
%% See also
%
% convert_data_to_ranking_format, non_linear_conjugate_gradient, RankNCG_linear_train
%
temp=zeros(data.d,1);
for g=1:data.C
i=data.G(g,1);
j=data.G(g,2);
for k=1:data.m(i)
for l=1:data.m(j)
diff=data.X{i}(:,k)-data.X{j}(:,l);
temp=temp + diff * sigmoid(w'*diff);
end
end
end
gradient=-(-data.lambda*w-temp);
return
function [f]=sigmoid(z)
f=1./(1+exp(-z));
return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -