📄 workbench_rankncg_linear_direct.html
字号:
[o_test]=RankNCG_linear_ranking_function(data_test.X_raw,w);[WMW_test]=compute_WMW(data_test,o_test,1);disp(sprintf(<span class="string">'WMW of the test set =%f'</span>,WMW_test));<span class="comment">%--------------------------------------------------------------------------</span><span class="comment">% Plot to see the ranking function learnt</span><span class="comment">%--------------------------------------------------------------------------</span>figure;subplot(2,2,1);plot(data_train.X_raw(1,:),data_train.y_raw,<span class="string">'b.'</span>);hold <span class="string">on</span>;plot(data_train.X_raw(1,:),o_train,<span class="string">'r.'</span>);title(<span class="string">'Training data'</span>);subplot(2,2,2);plot(data_test.X_raw(1,:),data_test.y_raw,<span class="string">'b.'</span>);hold <span class="string">on</span>;plot(data_test.X_raw(1,:),o_test,<span class="string">'r.'</span>);title(<span class="string">'Test data'</span>);</pre><pre class="codeoutput">RankNCG linear directLoading the Burges data set ...Splitting it into training and test set ...Normalizing the data ...Formatting the training data ...6 classes N=500 inputs in d=1 dimensions Graph type=full Total number of pairs=93812Formatting the test data ...6 classes N=5000 inputs in d=1 dimensions Graph type=full Total number of pairs=9383756Training using Nonlinear Conjugate gradient procedure ...Initializing the model parametersNonlinear Conjugate gradient Direct: lambda=10.000000 CG_tolerance=1.000000e-003Iteration 1[ 200] Line search iterations= 14 Error=4.666024e-013[1.000000e-003]Time taken =40.047000 secondsEvaluating the performance on the training set ...WMW of the training set =1.000000Evaluating the performance on the test set ...WMW of the test set =1.000000</pre><img vspace="5" hspace="5" src="workbench_RankNCG_linear_direct_01.png"> <p class="footer"><br> Published with MATLAB® 7.2<br></p> </div> <!--##### SOURCE BEGIN #####clear all;close all;disp('RankNCG linear direct');%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH% Ranking parameters%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHCG_tolerance=1e-3; % tolerance for the conjugate gradient procedureepsilon=1e-6; % accuracy parameter for the approximate gradient computationlambda=10; %regularization parameter%method='approx'; %Gradient computation done with fast approximate erfc summationmethod='direct'; %Gradient computation done without any approximationsverbose=1;plot_enable=1;graph_type='full';%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH% Load a sample data set%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHdisp('Loading the Burges data set ...');addpath ..\..\Data\Burges_ICML2005_datad=1;S=6;N_train=500;N_test=5000;N=N_train+N_test;[X,y]=Burges_data_1(d,N,S);%[X,y]=Burges_data_2(d,N,S);%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH% Split it into training and test set.%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHdisp('Splitting it into training and test set ...');X_train=X(:,1:N_train);y_train=y(:,1:N_train);X_test=X(:,N_train+1:N);y_test=y(:,N_train+1:N);clear X;clear y;%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH% Standardize the training data%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHaddpath ..\..\Data\disp('Normalizing the data ...');whiten=1;[X_train,mean_vector,A]=data_standardization(X_train,whiten,plot_enable);%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH% Standardize the test data%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH[X_test]=data_standardization_test_data(X_test,mean_vector,A,plot_enable);%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH% Convert the data to a format which my code understands%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHdisp('Formatting the training data ...');[data_train]=convert_data_to_ranking_format(X_train,y_train,graph_type);clear X_train;clear y_train;disp('Formatting the test data ...');[data_test]=convert_data_to_ranking_format(X_test,y_test,graph_type);clear X_test;clear y_test;%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH% Train the model%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHdisp('Training using Nonlinear Conjugate gradient procedure ...');[w,time_taken]=RankNCG_linear_train(data_train,CG_tolerance,lambda,method,epsilon,verbose,plot_enable);disp(sprintf('Time taken =%f seconds',time_taken));%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH% Test the performance on the training set%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHdisp('Evaluating the performance on the training set ...');[o_train]=RankNCG_linear_ranking_function(data_train.X_raw,w);[WMW_train]=compute_WMW(data_train,o_train,1);disp(sprintf('WMW of the training set =%f',WMW_train)); %REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH% Test the performance on the test set%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHdisp('Evaluating the performance on the test set ...');[o_test]=RankNCG_linear_ranking_function(data_test.X_raw,w);[WMW_test]=compute_WMW(data_test,o_test,1);disp(sprintf('WMW of the test set =%f',WMW_test));%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASH% Plot to see the ranking function learnt%REPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHREPLACE_WITH_DASH_DASHfigure;subplot(2,2,1);plot(data_train.X_raw(1,:),data_train.y_raw,'b.');hold on;plot(data_train.X_raw(1,:),o_train,'r.');title('Training data');subplot(2,2,2);plot(data_test.X_raw(1,:),data_test.y_raw,'b.');hold on;plot(data_test.X_raw(1,:),o_test,'r.');title('Test data');##### SOURCE END #####--> </body></html>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -