📄 rankboost_ranking_function.m
字号:
function [o]=RankBoost_ranking_function(X,T,model)
% Implementation of the ranking function for the RankBoost
%
%% Input
% * X ... d x N matrix, each column is one input.
% * T ... number of weak learners
% * model ... structure containing all the learnt weak learners
% * model.alpha ... the weight
% * model.i... the best feature
% * model.theta ... the best threshold
% * model.qdef ... the best default score
%
%% Ouput
% * o ... 1 x N vector of the outputs
%
%% Signature
% Author: Vikas Chandrakant Raykar
% E-Mail: vikas@cs.umd.edu
% Date: October 07, 2006
%
[d,N]=size(X);
o=zeros(1,N);
for t=1:T
o=o+model.alpha(t)*WeakLearn_ranking_function(X,model.i(t),model.theta(t),model.qdef(t));
end
return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -