⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pxa-gspi.c

📁 非常好的marvall 8686驱动源码
💻 C
📖 第 1 页 / 共 4 页
字号:

	wtdesc->ddadr |= DDADR_STOP;
	wtdesc->dcmd &= ~(DCMD_LENGTH);
	///CRLo: Not enabling the IRQ for the dummy-write. We only care about the read in here
	///	wtdesc->dcmd |= DCMD_ENDIRQEN | n;
	///ResetEvent(pwtDmaParam->dmaWaitObj);

	wtdesc->dcmd |= n;

	pHC->pDMARegs->ddg[pwtDmaParam->channel].ddadr = (UINT32) pHC->rw_desc_phys_addr;
	pHC->pDMARegs->ddg[prdDmaParam->channel].ddadr = (UINT32) pHC->read_desc_phys_addr;


	pHC->pDMARegs->dcsr[pwtDmaParam->channel] |=  DCSR_RUN;          // set the RUN bit
	pHC->pDMARegs->dcsr[prdDmaParam->channel] |=  DCSR_RUN;          // set the RUN bit

	///Wait here until it's done
	#if (USE_DMAIRQ == 1)
	dmaresult = WaitForSingleObject(prdDmaParam->dmaWaitObj, (MAX_WAITus/1000));
	if (dmaresult == WAIT_TIMEOUT) {
		GSPIMSG(ERRMSG, (TEXT("Rd-DMA timeout (%d)\n"), n));
		result = GSPI_TIMEOUT;
		goto funcFinal;
	}
	#else ///USE_DMAIRQ
	///Wait here until it's done
	{
	int		lp;
	volatile DWORD	dcsr;
	for (lp=0 ; lp<MAX_WAITus ; lp++) {
		///dcsr = pHC->pDMARegs->dcsr[DMA_CH_READ];
		dcsr = pHC->pDMARegs->dcsr[prdDmaParam->channel];
		///if (dcsr & (DCSR_EORINT|DCSR_STOPSTATE)) {
		if (dcsr & (DCSR_STOPSTATE)) {
			///if ((n % 4) == 0) {
			///	GSPIMSG(1, (TEXT("rd(%d), (lp, dcsr)= (%d, %xh)\n"), n, lp, dcsr));
			///}
			break;
		}
		udelay(pHC->pOSTRegs, 1);
		///NdisMSleep(1);
		///for (a=0 ; a<10 ; a++) ;
	}
	if (lp == MAX_WAITus) {
		GSPIMSG(ERRMSG, (TEXT("Rd-DMA(%d), (lp, dcsr) = (%d, %xh)\n"), n, lp, dcsr));
		result = GSPI_TIMEOUT;
	///} else {
	///	GSPIMSG(1, (TEXT("Rd-DMA ok, dcsr= %xh\n"), dcsr));
	}
	///Add one more delay at the end. Otherwise, the firmware download will failed. 
	/// (Don't know why)
	udelay(pHC->pOSTRegs, 50);			///trial value (50us);
	///NdisMSleep(1);
	}
	#endif ///USE_DMAIRQ
funcFinal:
	return result;
}

static GSPI_STATUS ssp_read_data_direct(DWORD hDC, WORD* data, WORD reg, WORD nword, WORD dummy_clk)
{
	GSPI_STATUS		result = GSPI_SUCCESS;
	PSSP_HARDWARE_CONTEXT	pHC;

	WORD	nbyte = nword * 2;

	#if (USE_DMA == 1)
	int		accnbyte;				///Accumulated length (0 - nbyte)
	int		fragnbyte;				///length of each fragment
	BOOLEAN	 isfrag = FALSE;
	#endif /// (USE_DMA == 1)

///GSPIMSG(1, (TEXT("r(%d)\n"), nbyte));
	ENTERFUNC();
	if (hDC == 0) {
		result = GSPI_INVALIDARGS;
		goto funcLeave;
	}
	pHC = (PSSP_HARDWARE_CONTEXT)hDC;

	EnterCriticalSection(&pHC->SSPCrit);

	///Reset the RX FIFO
	pHC->pSSPRegs->base.sscr0 &= ~SSCR0_SSE;
	pHC->pSSPRegs->base.sscr0 |= SSCR0_SSE;

	///2 more bytes for register address
	/// [Address][dummy_clk][data...]
	///n = 2 + dummy_clk*2 + n*2;
	set_GPIO_signal(pHC->pGPIORegs, SSP_SFRM,SIG_DOWN);

	///================================
#if (USE_DMA == 1)
	///DMA mode
	{
	///Write the register address
	///WORD *iodatPt = (WORD*)pHC->iodata;
	WORD *iodatPt = (WORD*)pHC->iorw;

	*iodatPt = reg;
	///result = setup_write_dma(pHC, (1+dummy_clk)*2);
	result = setup_read_dma(pHC, (1+dummy_clk)*2);
	if (result != GSPI_SUCCESS) {
		GSPIMSG(ERRMSG, (TEXT("Fail to push reg+dummy_clk[%d]...\n"), dummy_clk));
	}
	}

	///==============================================
	accnbyte = 0;
	while (1) {
		fragnbyte = nbyte - accnbyte;
		if (fragnbyte> PXA_SSP_IODATA_SIZE) {
			fragnbyte = PXA_SSP_IODATA_SIZE;	
			isfrag = TRUE;
		}

		result = setup_read_dma(pHC, fragnbyte);
		if (result != GSPI_SUCCESS) {
			GSPIMSG(ERRMSG, (TEXT("%s, Read data failed...\n"), TEXT(__FUNCTION__)));
			break;
		}
		///} while ((!(pHC->pDMARegs->dcsr[pHC->DMAParam[RDDMA_PARAM].channel] & DCSR_REQPEND) || retry) && --timeout);

		memcpy(data, pHC->iodata, fragnbyte);
		accnbyte += fragnbyte;
		data += (fragnbyte/2);			///type of data is WORD
		if (accnbyte == nbyte) {
			if (isfrag == TRUE) {
				GSPIMSG(RX_FRAG, (TEXT("Cont. reading data. (now, exp)=(%d, %d), complete!\n"), accnbyte, nbyte));
			}
			break;
		} else if (accnbyte > nbyte){
			GSPIMSG(ERRMSG, (TEXT("Invalid Rd Length, (exp, acc)=(%d, %d)\n"), nbyte, accnbyte));
		} else {
			if (isfrag == TRUE) {
				GSPIMSG(RX_FRAG, (TEXT("Cont. reading data. (now, exp)=(%d, %d)\n"), accnbyte, nbyte));
			}
		}
	}

#else
	///CPU mode
	{
	int		i;
	WORD	tmpval;

	///Write the register address
	///GSPIMSG(1, (TEXT("Writing reg-addreess\n")));
	pHC->pSSPRegs->base.ssdr = reg;
	udelay(pHC->pOSTRegs, 1);
	tmpval = pHC->pSSPRegs->base.ssdr;
	udelay(pHC->pOSTRegs, 1);

	///================================
	///Write Dummy clock
	///GSPIMSG(1, (TEXT("Dummy-clk(%d)\n"), dummy_clk));
	for (i=0 ; i<dummy_clk ; i++) {
		pHC->pSSPRegs->base.ssdr = 0;		///dummy_write
		udelay(pHC->pOSTRegs, 1);
		tmpval = pHC->pSSPRegs->base.ssdr;
		udelay(pHC->pOSTRegs, 1);
	}
	}	///================================

	{
	PWORD	dat = (PWORD)data;

	///================================
	/// Write the dummy_write & fetch the data
	///GSPIMSG(1, (TEXT("Reading datas(%d)WORD\n"), nword));
	for (i=0 ; i<nword ; i++) {
		pHC->pSSPRegs->base.ssdr = 0;		///dummy_write
		udelay(pHC->pOSTRegs, 1);

		*dat = pHC->pSSPRegs->base.ssdr;
		udelay(pHC->pOSTRegs, 1);
		dat ++;
	}
	///GSPIMSG(1, (TEXT("Reading data done!\n")));
	}
#endif ///USE_DMA

	set_GPIO_signal(pHC->pGPIORegs, SSP_SFRM,SIG_UP);
    udelay(pHC->pOSTRegs, 2);

	///Comment it out temporally to make compiler happy
///funcFinal:
	LeaveCriticalSection(&pHC->SSPCrit);
funcLeave:
	EXITFUNC(result);
	return result;
}

///
/// ssp_read_register: Read the register from SSP interface
/// Input: 
///		hDC - the context returned from SSP_Init
///		regaddr - register addreess
///	Output:
///		regdatPt - returned register value
///	Return: 
///		0 - success
///		-1 - failure
GSPI_STATUS ssp_read_register(DWORD hDC, WORD* regdatPt, WORD regaddr)
{
	GSPI_STATUS	result;
	int			i;

	for (i=0 ; i<GSPI_MAX_REG_RETRY ; i++) {
		result = ssp_read_data_direct(hDC, regdatPt, regaddr, 1, g_spi_dummy_clk_reg);
		if (result == GSPI_SUCCESS) {
			break;
		}
	}
	if (i == GSPI_MAX_REG_RETRY) {
		GSPIMSG(ERRMSG, (L"%s, Read register(%xh) timeout \n", TEXT(__FUNCTION__), regaddr));
		result = GSPI_TIMEOUT;
	}

	return result;
}

///
/// ssp_write_register: Write the register from SSP interface
/// Input: 
///		hDC - the context returned from SSP_Init
///		regaddr - register addreess
///		regdat - register value to write
///	Output:
///		None
///	Return:
///		0 - success
///		-1 - failure
GSPI_STATUS ssp_write_register(DWORD hDC, WORD regaddr, WORD* regdatPt)
{
	GSPI_STATUS	result;
	int			i;

	for (i=0 ; i<GSPI_MAX_REG_RETRY ; i++) {
		result = ssp_write_data_direct(hDC, regdatPt, regaddr, 1);
		if (result == GSPI_SUCCESS) {
			break;
		}
	}
	if (i == GSPI_MAX_REG_RETRY) {
		GSPIMSG(ERRMSG, (L"%s, Write register(%xh) timeout \n", TEXT(__FUNCTION__), regaddr));
		result = GSPI_TIMEOUT;
	}

	return result;
}

///
/// ssp_read_data: Read the data from SSP interface
/// Input: 
///		hDC - the context returned from SSP_Init
///		datPt - data buffer
///		size - size of the data buffer
///	Output:
///		none
///	Return: 
///		0 - success
///		-1 - failure
GSPI_STATUS ssp_read_data(DWORD hDC, WORD* datPt, WORD reg, WORD nword)
{
	GSPI_STATUS	result;
	int			i;

	for (i=0 ; i<GSPI_MAX_REG_RETRY ; i++) {
		result = ssp_read_data_direct(hDC, datPt, reg, nword, g_spi_dummy_clk_data);
		if (result == GSPI_SUCCESS) {
			break;
		}
	}
	if (i == GSPI_MAX_REG_RETRY) {
		GSPIMSG(ERRMSG, (L"%s, Read data(%xh) timeout \n", TEXT(__FUNCTION__), nword));
		result = GSPI_TIMEOUT;
	}

	return result;
}

///
/// ssp_write_data: Write the data from SSP interface
/// Input: 
///		hDC - the context returned from SSP_Init
///		datPt - data buffer
///		size - size of the data buffer
///	Output:
///		datPt - returned data buffer
///		size - size of the returned data buffer
///	Return:
///		0 - success
///		-1 - failure
GSPI_STATUS ssp_write_data(DWORD hDC, WORD* datPt, WORD reg, WORD nword)
{
	///Note: reg(0x24) = DATA_PORT
	GSPI_STATUS	result;
	int			i;

	for (i=0 ; i<GSPI_MAX_REG_RETRY ; i++) {
		///result = ssp_write_data_direct(hDC, datPt, 0x24, size);
		result = ssp_write_data_direct(hDC, datPt, reg, nword);
		if (result == GSPI_SUCCESS) {
			break;
		}
	}
	if (i == GSPI_MAX_REG_RETRY) {
		GSPIMSG(ERRMSG, (L"%s, Read data(%xh) timeout \n", TEXT(__FUNCTION__), nword));
		result = GSPI_TIMEOUT;
	}

	return result;
}

///===========================================
int pxa_read_intstate(DWORD hDC)
{
	PSSP_HARDWARE_CONTEXT	pHC;
	DWORD			gplr, gedr;
	DWORD			resval;

	if (hDC == 0) {
		resval = 0;
		goto funcfinal;
	}
	pHC = (PSSP_HARDWARE_CONTEXT) hDC;

	gedr = pHC->pGPIORegs->GEDR0;
	gplr = pHC->pGPIORegs->GPLR0;
	GSPIMSG(1, (L"(GPLR0, GEDR): (%08xh, %08xh) \n", gplr, gedr));
	resval = (gplr >> SSP_INTR)&1;
funcfinal:
	return resval;
}
///===========================================

static BOOLEAN dev_ist(PSSP_HARDWARE_CONTEXT	pHC)
{
	#if (USE_DEVIRQ == 0)
	if (pHC->DriverShutdown == TRUE) {
		return FALSE;
	}
///	if (g_fmDnRdy == FALSE) {
		///Firmware has not been downloaded. It's impossible to have an interrupt.
///		return FALSE;
///	}

	/// If there is a pending intrrupt
	/*{
	WORD	ucHostIntStatus;

	///Note: HCR_HOST_INT_STATUS_REGISTER = 0x5c
	ssp_read_register((DWORD)pHC, 0x5c, &ucHostIntStatus);
	if (ucHostIntStatus == 0x00) {
		return FALSE;
	}
	}*/
	#endif ///USE_DEVIRQ

	/*{
		DWORD gedr = pHC->pGPIORegs->GEDR0;
		if ((gedr & (1 << SSP_INTR)) == 0) {
			GSPIMSG(1, (TEXT("GEDR: %x"), gedr));
		}
	}*/
	////crlo:BSP patch ++
	///#if (USE_DEVIRQ == 1)
	///A patch for the MAINSTONE BSP
	///We use GPIO_22 as our interrupt source. We need to clear the GEDR (GPIO Edge Detect Status Register)
	/// manually. Otherwise, the BSP will think the interrupt has not been served & come to IST continually
	{
		pHC->pGPIORegs->GEDR0 = (1 << SSP_INTR);
	}
	///#endif ///USE_DEVIRQ
	////crlo:BSP patch --

	//Doing the ISR service routine;
	if (pHC->isrFunc != NULL) {
		pHC->isrFunc(pHC->isrContext);
	}
	return TRUE;
}



static BOOLEAN dma_ist(LPVOID param)
{
	BOOLEAN		result = FALSE;
	MYDMAPARAM	*pDmaParam = (MYDMAPARAM	*)param;
	volatile DWORD		dcsr;

	///GSPIMSG(1, (TEXT("Enter %s"), TEXT(__FUNCTION__)));

	dcsr = pDmaParam->pDMARegs->dcsr[pDmaParam->channel];
	///GSPIMSG(1, (TEXT("ch:%d dcsr= %xh"), pDmaParam->channel, dcsr));

	//dcsr &= ~DCSR_STOPIRQEN;
	//dcsr |= DCSR_ENDINTR;
	///pDmaParam->pDMARegs->dcsr[pDmaParam->channel] = dcsr;
	GSPIMSG(DMA_MSG, (TEXT("Write dcsr= %xh"), dcsr));


	///if ((dcsr & DCSR_RUN) && (dcsr & DCSR_STOPSTATE)) {
	if (dcsr & (DCSR_BUSERR|DCSR_ENDINTR)) {
		dcsr &= ~DCSR_STOPIRQEN;
		dcsr |= DCSR_ENDINTR;
		pDmaParam->pDMARegs->dcsr[pDmaParam->channel] = dcsr;

		dcsr = pDmaParam->pDMARegs->dcsr[pDmaParam->channel];
		GSPIMSG(DMA_MSG, (TEXT("=>after clr: ch:%d dcsr= %xh"), pDmaParam->channel, dcsr));
		SetEvent(pDmaParam->dmaWaitObj);
		result = TRUE;
	}

	///Bus Error
	if (dcsr & DCSR_BUSERR) {
		///dcsr |= DCSR_BUSERR;
		GSPIMSG(ERRMSG, (TEXT("%s => DMA Bus Error"), TEXT(__FUNCTION__)));
		goto funcFinal;		
	}
	///Data transfer completed
	if (dcsr & DCSR_ENDINTR) {
		GSPIMSG(PROGFLOW, (TEXT("%s => DMA Complete"), TEXT(__FUNCTION__)));
		goto funcFinal;		
	}


funcFinal:
	return result;
}


#if 0
#define CONTROLLER_DMA_ISR_DLL_TEXT			_T("DMAIsrDll")
#define CONTROLLER_DMA_ISR_HANDLER_TEXT		_T("DMAIsrHandler")
#define CONTROLLER_DMA_IRQ_TEXT				_T("DMAIRQ")
#define CONTROLLER_DMA_SYSINT_TEXT			_T("DMASysIntr")
#define CONTROLLER_DMA_CHANNEL_TEXT			_T("DMAChannel")
#define CONTROLLER_DMA_IST_PRI_TEXT			_T("DMAISTPriority")
#define CONTROLLER_DMA_BUFFER_SIZE_TEXT		_T("DMABufferSize")


void LoadRegistrySettings(HKEY hKeyDevice, PSSP_HARDWARE_CONTEXT pController)
{

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -