📄 pxa-gspi.c
字号:
//
// Copyright (c) Microsoft Corporation. All rights reserved.
//
//
// Use of this source code is subject to the terms of the Microsoft end-user
// license agreement (EULA) under which you licensed this SOFTWARE PRODUCT.
// If you did not accept the terms of the EULA, you are not authorized to use
// this source code. For a copy of the EULA, please see the LICENSE.RTF on your
// install media.
//
/*++
THIS CODE AND INFORMATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
PARTICULAR PURPOSE.
Module Name:
pxa-gspi.c
Abstract:
Holds implementation of pcmcia serial driver interface. This serial PDD
makes use of the ser16550 library to do most of the work.
Functions:
Notes:
--*/
#include <windows.h>
#include <nkintr.h>
#include <ndis.h>
#include <types.h>
#include <memory.h>
#include <tchar.h>
#include <ceddk.h>
#include <bulverde.h>
#include <xllp_dmac.h>
#include <Devload.h>
#include <giisr.h>
#include "myintr.h"
#include "pxa-gpio.h"
#include "pxa-ssp.h"
#include "pxa-dma.h"
#include "pxa-gspi.h"
#include "sspioctl.h"
#ifdef DEBUG
#define GSPIMSG DEBUGMSG
#else
#define GSPIMSG RETAILMSG
#endif ///DEBUG
///int g_fmDnRdy = FALSE;
extern int g_spi_dummy_clk_reg;
extern int g_spi_dummy_clk_data;
///volatile BULVERDE_DMA_REG *pg_DMARegs;
static LPCTSTR pg_szActiveKey = _T("GSPI8385");
///============================================================================
/// Flags to control the displayed message
#define ERRMSG 0 ///Error Message. Displayed only error occurred
#define FUNCTAG 0 ///Display the message to show the function enter/exit
#define TICKCNTMSG 0 ///Tick count message
#define PROGFLOW 0 ///Display the message to show the program's running flow
#define TX_FRAG 0 ///Display the message whenever the fragmentation is needed in TX
#define RX_FRAG 0 ///Display the message whenever the fragmentation is needed in RX
#define DMA_MSG 0 ///Display the message for debuggin the DMA module
///============================================================================
#define ENTERFUNC() GSPIMSG(FUNCTAG,(L"Enter %s\n", TEXT(__FUNCTION__)))
#define EXITFUNC(x) GSPIMSG(FUNCTAG, (L"Exit %s (%d)\n", TEXT(__FUNCTION__), x))
#define GSPI_MAX_REG_RETRY 3
static GSPI_STATUS setup_write_dma(PSSP_HARDWARE_CONTEXT pHC, int n);
static GSPI_STATUS setup_read_dma(PSSP_HARDWARE_CONTEXT pHC, int n);
///////////////////////////////////////////////////////////////////////////////
#if (SSPCTRLER == 1)
#define SSPREG_PHY_BASE BULVERDE_BASE_REG_PA_SSP1
#define DMA_CHMAP_SSP_RX DMA_CHMAP_SSP1_RX
#define DMA_CHMAP_SSP_TX DMA_CHMAP_SSP1_TX
#define XLLP_DMAC_SSP_RX XLLP_DMAC_SSP_1_RX
#define XLLP_DMAC_SSP_TX XLLP_DMAC_SSP_1_TX
#elif (SSPCTRLER == 2)
#define SSPREG_PHY_BASE BULVERDE_BASE_REG_PA_SSP2
#define DMA_CHMAP_SSP_RX DMA_CHMAP_SSP2_RX
#define DMA_CHMAP_SSP_TX DMA_CHMAP_SSP2_TX
#define XLLP_DMAC_SSP_RX XLLP_DMAC_SSP_2_RX
#define XLLP_DMAC_SSP_TX XLLP_DMAC_SSP_2_TX
#elif (SSPCTRLER == 3)
#define SSPREG_PHY_BASE BULVERDE_BASE_REG_PA_SSP3
#define DMA_CHMAP_SSP_RX DMA_CHMAP_SSP3_RX
#define DMA_CHMAP_SSP_TX DMA_CHMAP_SSP3_TX
#define XLLP_DMAC_SSP_RX XLLP_DMAC_SSP_3_RX
#define XLLP_DMAC_SSP_TX XLLP_DMAC_SSP_3_TX
#endif ///SSPCTRLER
///---------------------------------------------------------
///Signal Definition
///
#define SSP_SCLK 23
#define SSP_SFRM 24
#define SSP_TX 25
#define SSP_RX 26
#define SSP_INTR 22
#define SSPSCLK_ATTR GPIO_ALT_FN_2_OUT
#define SSPSFRM_ATTR GPIO_OUT
#define SSPTX_ATTR GPIO_ALT_FN_2_OUT
#define SSPRX_ATTR GPIO_ALT_FN_1_IN
#define SSPIRQ_ATTR GPIO_IN
///Define DMA channel
#define DMA_CH_READ 8
#define DMA_CH_RW 24
///#define SSP_IRQNUM 22 ///Trial value from sdhc_mainstoneii.reg
#define MVL_DEF_DRR 0x05
#define MVL_DEF_DRP 0x0e
///CLK dividend
static int clkdiv = 0;
///---------------------------------------------------------
///Buffer defintion
///
#define PXA_SSP_BLKSZ_MAX (1<<9)
#define PXA_SSP_BLOCKS_PER_BUFFER (3)
#define PXA_SSP_IODATA_SIZE (PXA_SSP_BLOCKS_PER_BUFFER * \
PXA_SSP_BLKSZ_MAX)
///---------------------------------------------------------
///DMA ISR functions
///
/// Maximum waiting period (us)
#define MAX_WAITus 100000 //dralee 100ms
///#define MAX_WAITus 10000000 //dralee 100ms
// the dmcd struct is for documentation
struct dcmdRegBits
{
unsigned len :13;
unsigned rsv0 :1;
unsigned width :2;
unsigned size :2;
unsigned endian :1;
unsigned flybyt :1;
unsigned flybys :1;
unsigned endirqen :1;
unsigned startirqen :1;
unsigned rsv1 :5;
unsigned flowtrg :1;
unsigned flowsrc :1;
unsigned inctrgadd :1;
unsigned incsrcadd :1;
};
union DMACmdReg// allow bitfields or masks
{
volatile struct dcmdRegBits DcmdReg ;
volatile DWORD DcmdDword;
} ;
#define DEFAULT_IST_PRIORITY 101
///#define DEFAULT_IST_PRIORITY 249
///#define SSP_DMA_INTR (SYSINTR_FIRMWARE+1)
///#define SSP_DMA_INTR (SYSINTR_FIRMWARE+1)
///static ULONG dma_irqr(PSSP_HARDWARE_CONTEXT pHC);
///static ULONG dma_irqw(VOID* devid);
static BOOLEAN dma_ist(LPVOID param);
static BOOLEAN dev_ist(PSSP_HARDWARE_CONTEXT pHC);
static GSPI_STATUS ssp_write_data_direct(DWORD hDC, PWORD data, WORD reg, WORD nword);
static GSPI_STATUS ssp_read_data_direct(DWORD hDC, WORD* data, WORD reg, WORD nword, WORD dummy_clk);
///---------------------------------------------------------
//The function was modified from XllpOstDelayMicroSeconds() in XLLP\xllp_ost.c
//
// OST Tick constants
//
#define XLLP_OST_TICKS_MS 3250 // 1ms in ticks (3.25x10^6tick/sec * 1/1000sec/msec)
#define XLLP_OST_TICKS_US 3 // 1usec in ticks (3.25x10^6tick/sec * 1/1000000sec/usec)
static void XllpOstDelayTicks
(volatile BULVERDE_OST_REG * pOstRegs, DWORD ticks)
{
volatile DWORD expireTime;
volatile DWORD time=0;
/*
DWORD i,j;
for(j=0;j<ticks;j++)
{
for(i=0; i<20; i++ )
time += ticks;
}
pOstRegs->oscr0 = 0;
*/
time = pOstRegs->oscr0;
expireTime = time + ticks;
//
// Check if we wrapped on the expireTime
// and delay first part until wrap
//
if (expireTime < time)
{
GSPIMSG(TICKCNTMSG,(L"%s, Timer is wrapped (expt, t)=(%xh, %xh)\n", TEXT(__FUNCTION__), expireTime, time));
while (time <= pOstRegs->oscr0);
GSPIMSG(TICKCNTMSG,(L"%s, timer is wrapped (leave)\n", TEXT(__FUNCTION__)));
}
while (pOstRegs->oscr0 <= expireTime);
//RETAILMSG(1,(L"oscr0 %x:%x,\n",expireTime,pOstRegs->oscr0));
return;
}
void udelay(volatile BULVERDE_OST_REG *pOstRegs, DWORD ms)
{
DWORD ticks;
ticks = ms * XLLP_OST_TICKS_US * 3; // approx. 3 ticks per microsecond.
XllpOstDelayTicks (pOstRegs, ticks);
return;
}
///////////////////////////////////////////////////////////////////////////////
/// Core functions of the SSP interface accessing
///
static GSPI_STATUS setup_write_dma(PSSP_HARDWARE_CONTEXT pHC, int n)
{
GSPI_STATUS result = GSPI_SUCCESS;
volatile DMADescriptorChannelType *desc = pHC->write_desc;
MYDMAPARAM *pDmaParam = &pHC->DMAParam[WTDMA_PARAM];
#if (USE_DMAIRQ == 1)
DWORD dmaresult;
#endif ///USE_DMAIRQ
desc->ddadr |= DDADR_STOP;
desc->dcmd &= ~(DCMD_LENGTH);
#if (USE_DMAIRQ == 1)
desc->dcmd |= DCMD_ENDIRQEN | n;
ResetEvent(pDmaParam->dmaWaitObj);
#else ///USE_DMAIRQ
desc->dcmd |= n;
#endif ///USE_DMAIRQ
if (n > PXA_SSP_IODATA_SIZE) {
GSPIMSG(ERRMSG, (TEXT("Requested length is too large (limit, req) = (%d, %xh)\n"), ERRMSG, n));
}
///Start DMA channel
pHC->pDMARegs->ddg[pDmaParam->channel].ddadr = (UINT32) pHC->write_desc_phys_addr;
pHC->pDMARegs->dcsr[pDmaParam->channel] |= DCSR_RUN; /// set the RUN bit
///Wait here until it's done
#if (USE_DMAIRQ == 1)
dmaresult = WaitForSingleObject(pDmaParam->dmaWaitObj, (MAX_WAITus/1000));
if (dmaresult == WAIT_TIMEOUT) {
GSPIMSG(ERRMSG, (TEXT("Wt-DMA timeout (%d)\n"), n));
result = GSPI_TIMEOUT;
///goto funcFinal;
}
#else ///USE_DMAIRQ
///Wait here until it's done
{
int lp;
volatile DWORD dcsr;
for (lp=0 ; lp<MAX_WAITus ; lp++) { ///Trial period (1s)
dcsr = pHC->pDMARegs->dcsr[pDmaParam->channel];
if (dcsr & (DCSR_STOPSTATE)) {
///GSPIMSG(1, (TEXT("wt(%d) (lp,dcsr) = (%d, %xh)\n"), n, lp, dcsr));
break;
}
udelay(pHC->pOSTRegs, 1);
///NdisMSleep(1);
///for (a=0 ; a<10 ; a++) ;
}
if (lp == MAX_WAITus) {
GSPIMSG(ERRMSG, (TEXT("Wt-DMA(%d) (lp, dcsr) = (%d, %xh)\n"), n, lp, dcsr));
result = GSPI_TIMEOUT;
///} else {
///GSPIMSG(1, (TEXT("Wt-DMA ok, dcsr= %xh\n"), dcsr));
}
///Add one more delay at the end. Otherwise, the firmware download will failed.
/// (Don't know why)
udelay(pHC->pOSTRegs, 50); ///Trial value
///NdisMSleep(1);
}
#endif ///USE_DMAIRQ
///funcFinal:
return result;
}
static GSPI_STATUS ssp_write_data_direct(DWORD hDC, PWORD data, WORD reg, WORD nword)
{
int result = GSPI_SUCCESS;
PSSP_HARDWARE_CONTEXT pHC;
int nbyte;
///crlo:length-fix ++
int fragnbyte, accnbyte;
BOOLEAN needToWriteReg = TRUE;
BOOLEAN isFrag = FALSE;
///crlo:length-fix --
#if (USE_DMA != 1)
int i;
PWORD dat;
#endif ///(USE_DMA == 1)
///GSPIMSG(1, (TEXT("w(%d)\n"), (nword*2)));
ENTERFUNC();
if (hDC == 0) {
result = GSPI_INVALIDARGS;
goto funcLeave;
}
pHC = (PSSP_HARDWARE_CONTEXT)hDC;
EnterCriticalSection(&pHC->SSPCrit);
///n is a unit of WORD. Convert it to unit of BYTE
nbyte = nword * 2;
reg |= 0x8000;
set_GPIO_signal(pHC->pGPIORegs, SSP_SFRM,SIG_DOWN);
accnbyte = 0;
///crlo: We write the register address at the beginning
pHC->pSSPRegs->base.ssdr = reg;
///crlo: Writing the data
while (1) {
if ((nbyte - accnbyte) > (PXA_SSP_IODATA_SIZE)) {
fragnbyte = PXA_SSP_IODATA_SIZE;
GSPIMSG(TX_FRAG, (TEXT("Fragment Tx Data (now, exp)=(%d, %d)\n"), accnbyte, nbyte));
isFrag = TRUE;
} else {
fragnbyte = nbyte - accnbyte;
}
memcpy(pHC->iodata, data, fragnbyte);
#if (USE_DMA == 1)
///DMA mode
result = setup_write_dma(pHC, fragnbyte);
if (result != GSPI_SUCCESS) {
GSPIMSG(ERRMSG, (TEXT("Not successful after sending %d bytes.\n"), accnbyte));
break;
}
#else
///CPU mode
{
dat = (PWORD)pHC->iodata;
for (i=0 ; i<(fragnbyte/2) ; i++) {
pHC->pSSPRegs->base.ssdr = *dat;
dat ++;
udelay(pHC->pOSTRegs, 1);
}
}
#endif ///USE_DMA
data += (fragnbyte/2); ///type of Data is WORD
accnbyte += fragnbyte;
if (accnbyte == nbyte) {
if (isFrag == TRUE) {
GSPIMSG(TX_FRAG, (TEXT("Sending %d bytes complete\n"), accnbyte));
}
break;
} else if (accnbyte > nbyte) {
GSPIMSG(ERRMSG, (TEXT("Invalid fragment, (exp, acc)=(%d, %d).\n"), nbyte, accnbyte));
break;
}
}
///crlo: If the data length is NOT multiple of DWORD, add more
/// crlo: ref: SPU specification chap4
{
if (((nbyte %4) != 0) && ((reg ==0x0c)||(reg ==0x18)||(reg ==0x24) )){
///crlo: Because we are using 16-bit data accessing, if (nyte%4)!=0, it must be 2
/// => add one more WORD
pHC->pSSPRegs->base.ssdr = 0;
udelay(pHC->pOSTRegs, 10);
GSPIMSG(1, (TEXT("Add one more WORD to fit 32-bit boundary\n"), accnbyte));
}
}
set_GPIO_signal(pHC->pGPIORegs, SSP_SFRM,SIG_UP);
udelay(pHC->pOSTRegs, 2);
LeaveCriticalSection(&pHC->SSPCrit);
funcLeave:
EXITFUNC(result);
return result;
}
static GSPI_STATUS setup_read_dma(PSSP_HARDWARE_CONTEXT pHC, int n)
{
volatile DMADescriptorChannelType *rddesc = pHC->read_desc;
volatile DMADescriptorChannelType *wtdesc = pHC->rw_desc;
MYDMAPARAM *pwtDmaParam = &pHC->DMAParam[WTDMA_PARAM];
MYDMAPARAM *prdDmaParam = &pHC->DMAParam[RDDMA_PARAM];
GSPI_STATUS result = GSPI_SUCCESS;
#if (USE_DMAIRQ == 1)
DWORD dmaresult;
#endif ///USE_DMAIRQ
rddesc->ddadr |= DDADR_STOP;
rddesc->dcmd &= ~(DCMD_LENGTH);
#if (USE_DMAIRQ == 1)
rddesc->dcmd |= DCMD_ENDIRQEN | n;
ResetEvent(prdDmaParam->dmaWaitObj);
#else ///USE_DMAIRQ
rddesc->dcmd |= n;
#endif ///USE_DMAIRQ
if (n > PXA_SSP_IODATA_SIZE) {
GSPIMSG(ERRMSG, (TEXT("Requested length is too large (limit, req) = (%d, %xh)\n"), ERRMSG, n));
result = GSPI_INVALIDARGS;
goto funcFinal;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -