📄 rec_lsq.m
字号:
function rec_lsq(A,b,Sigma)
%REC_LSQ Recursive Least Squares
% A is the coefficient matrix, b the observations and
% Sigma a vector containing the diagonal entries of
% the covariance matrix for the problem.
% For increasing i we include one more observation
%Kai Borre 09-16-97
%Copyright (c) by Kai Borre
%$Revision: 1.0 $ $Date: 1997/10/15 $
if nargin == 0
A = [1 0;1 1;1 3;1 4];
b = [0;8;8;20];
Sigma = diag([1,1,1,1]);
end
invSigma = inv(Sigma(1,1));
% Initial weight
P = A(1,:)'*invSigma*A(1,:);
if rcond(P) == 0
P = 1.e10*eye(size(A,2));
else
P = inv(P);
end
% Initial solution
x = pinv(A(1,:)'*invSigma*A(1,:))*A(1,:)'*invSigma*b(1);
for i = 1:size(b,1)
invSigma = inv(Sigma(i,i));
AtinvS =A(i,:)'*invSigma;
P = inv(inv(P)+AtinvS*A(i,:)) %;
K = P*AtinvS;
x = x+K*(b(i)-A(i,:)*x);
fprintf('\nSolution:\n');
for j = 1:size(A,2)
fprintf(' x(%2g) = %6.3f\n',j,x(j));
end
end
dof = size(b,1)-size(A,2);
if dof ~= 0
P = (norm(b-A*x))^2*P/dof;
else
P = (norm(b-A*x))^2*pinv(A'*Sigma*A);
end
fprintf('\nFinal Covariance matrix:\n');
for j = 1:size(A,2)
for k = 1:size(A,2)
fprintf('%12.3f',P(j,k));
end
fprintf('\n');
end
fprintf('\nTrace of Covariance matrix: %12.3f\n',trace(P));
%%%%%%%%%%%%%%%%% end rec_lsq.m %%%%%%%%%%%%%%%%%%%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -