📄 re_order.m
字号:
function [L, D, a, Zti] = re_order(n, L, D, a, Zti)
% RE_ORDER Computation of the Z-transformation matrix
%
% The final Z-transformation is constructed from a sequence of
% interchanges of two neighbouring ambiguities (this function) and
% integer Gauss transformations (function ztransi) that pair-wise
% decorrelate the ambiguities.
% n dimension of the system
% L lower triangular matrix L
% D diagonal matrix D (only diagonal stored)
% a Z^T* a, a being the original vector of ambiguities
% Zti inverse Z transposed transformation matrix
% Delft Geodetic Computing Centre/LGR, Paul de Jonge
% copyright by Delft University of Technology, Faculty of Geodesy
% Recoded into MATLAB by Kai Borre 12-04-96
i1 = n - 1;
sw = 'true '; % The logical sw traces whether an
% interchange has occured or not
while sw == 'true '
i = n;
sw = 'false';
while (sw == 'false') & (i > 1)
i = i - 1;
if (i <= i1)
[L, a, Zti] = ztransi(i, i, n, L, a, Zti);
end
delta = D(i) + L(i+1,i)^2 * D(i+1);
if (delta < D(i+1))
lambda(3) = D(i+1) * L(i+1,i) / delta;
eta = D(i) / delta;
D(i) = eta * D(i+1);
D(i+1) = delta;
for j = 1:i-1
lambda(1) = L(i,j);
lambda(2) = L(i+1,j);
L(i,j) = lambda(2) - L(i+1,i) * lambda(1);
L(i+1,j) = lambda(3) * lambda(2) + eta * lambda(1);
end
L(i+1,i) = lambda(3);
for j = i+2:n % to be coded effectively:
% interchange of columns L(i+2:n,i)
% and L(i+2:n,i+1)
help = L(j,i);
L(j,i) = L(j,i+1);
L(j,i+1) = help;
end
for j = 1:n % to be coded effectively:
% swap Zti(1:n,i) with Zti(1:n,i+1)
help = Zti(j,i);
Zti(j,i) = Zti(j,i+1);
Zti(j,i+1) = help;
end
help = a(i);
a(i) = a(i+1);
a(i+1) = help;
i1 = i;
sw = 'true ';
end
end
end
%%%%%%%%%%%%%% end re_order.m %%%%%%%%%%%%%%%%%%%%%%%%
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -