📄 ga3d.asv
字号:
function [x,y,fx,vx,vmfit,P] = ga3d(v,ger,pc,pm);%% Ph.D. Thesis
% Leandro Nunes de Castro
% November, 1999.
% ENHANCED GENETIC ALGORITHM - Bi-classist Selection%% Secondary functions: DECODE & IMPRIME(internal)%% function [x,y,fx,vx,vmfit,P] = ga3d(v,ger,N,pc,pm);% x,y,fx -> f(x,y) is the maximal value of the function% vfx -> vector of best fitness of population through generations% vmfit -> vector of mean fitness of population through generations
% v -> population of size N x 2.L (L = 22 [-1,1])
% ger -> number of generations% N -> population size% pc -> cross-over probability% pm -> mutation probability%% Definitions% f -> evaluation function% v -> population% fit -> fitness vector% x,y -> decodified coordinates% Maximum found: [x,y,f] = [1.76,1.27,4.0172];%% Default Parameters
if nargin == 1,
[N,L] = size(v); ger = 250; pc = 0.5; pm = 0.01;end;
disp(sprintf('Number of generations: %d',ger));
disp(sprintf('Population size: %d',N));
disp(sprintf('Crossover probability: %.3f',pc));disp(sprintf('Mutation probability: %.3f',pm));
% f = '-1 * x .* sin(2 * pi .* x) + y.* sin(2 * pi .* y) + 1'; f = '1 * x .* sin(4 * pi .* x) - 1 * y.* sin(4 * pi .* y + pi) + 1'; % Plotting parameters% [x,y] = meshgrid(-1:0.05:2,-1:0.05:2); vxp = x; vyp = y;[x,y] = meshgrid(-1:0.05:1,-1:0.05:1); vxp = x; vyp = y;
vzp = eval(f); PRINT = 1;% General parameters & Initial operationssol = 1; vmfit = []; it = 1; vx = []; C = [];x = decode(v(:,1:22)); y = decode(v(:,23:end)); fit = eval(f);imprime(PRINT,vxp,vyp,vzp,x,y,fit,1,1); title('Initial Population');
disp('Press any key to continue...'); pause;pb = 0.5; pw = 0.1; pr = 1 - (pb + pw);nb = round(pb * N); nw = round(pw * N); nr = round(pr * N);if (nb + nw + nr) ~= N, dif = N - (nb + nw + nr); nr = nr + dif;end;% Generationst0 = clock; f0 = flops;
while it <= ger & sol <= 2.26, % Reproduction (Bi-classist Selection) [rw,ind] = sort(fit); ind = fliplr(ind); vtemp = [v(ind(1:nb),:); v(ind(end-nw+1:end),:); v(2:nr+1,:)]; % Crossover C(:,1) = rand(N,1) <= pc; C(:,2) = round(19.*rand(N,1))+1;
I = find(C(:,1) == 1); IP = [I,C(I,2)];
for i = 1:size(IP,1),
v(IP(i,1),:) = [vtemp(IP(i,1),1:IP(i,2)) vtemp(1,IP(i,2)+1:end)];
end;
% Mutation M = rand(N,L) <= pm; M(1,:) = zeros(1,L);
v = v - 2 .* (v.*M) + M;
% Results
% x = decode(v); fit = eval(f); x = decode(v(:,1:22)); y = decode(v(:,23:end)); fit = eval(f);
imprime(PRINT,vxp,vyp,vzp,x,y,fit,it,5);
[sol,indb] = max(fit);
v(1,:) = v(indb,:); media = mean(fit);
vx = [vx sol]; vmfit = [vmfit media];
if rem(it,1) == 0 | it == 10,
disp(sprintf('Gen.: %d x: %2.2f y: %2.2f Av: %2.2f f(x,y): %2.3f',it,x(indb),y(indb),media,sol)); end;
it = it + 1;end;T = etime(clock,t0); F = flops - f0;x = x(indb); y = y(indb); fx = sol; P = v;% Results% clf; plot(vx); title('f(x) evolution'); xlabel('Generations'); ylabel('f(x)');
% hold on; plot(vmfit); hold off;
% --------------------- %% INTERNAL SUBFUNCTIONS% --------------------- %
% Print Surfacefunction [] = imprime(PRINT,vx,vy,vz,x,y,fx,it,mit);% x,fx -> actual values% vxplot, vplot -> original (base) functionif PRINT == 1, if rem(it,mit) == 0, mesh(vx,vy,vz); hold on; axis([-1 1 -1 1 -1 2.5]); xlabel('x'); ylabel('y'); zlabel('f(x,y)');
plot3(x,y,fx,'k*'); drawnow; hold off; end;end;% Decodify bitstringsfunction x = decode(v);% x -> real value (precision: 6)% v -> binary string (length: 22)v = fliplr(v); s = size(v);
aux = 0:1:21; aux = ones(s(1),1)*aux;
x1 = sum((v.*2.^aux)');
x = -1 + x1 .* (2 / 4194303);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -