📄 parzenmls.m
字号:
%PARZENML Optimum smoothing parameter in Parzen density estimation.% Soft label version% % H = PARZENML(A,FID)% % INPUT % A input dataset% FID File ID to write progress to (default [], see PRPROGRESS)%% OUTPUT% H scalar smoothing parameter%% DESCRIPTION% Maximum likelihood estimation for the smoothing parameter H in the % Parzen denstity estimation of the data in A. A leave-one out % maximum likelihood estimation is used. %% This routine does not use class information and computes a single% smoothing parameter. It may be profitable to scale the data before% calling it. eg. WS = SCALEM(A,'variance'); A = A*WS; If desired,% remove unlabeled objects first, e.g. by SELDAT.% % SEE ALSO% DATASETS, MAPPINGS, SCALEM, SELDAT, PARZENML, PARZENDC, PRPROGRESS% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Sciences, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: parzenml.m,v 1.7 2004/01/21 20:45:44 bob Exp $function h = parzenml(A,fid) prtrace(mfilename); if nargin < 2, fid = []; end SS = gettargets(setlabtype(A,'soft')); [m,k,c] = getsize(A); DD= distm(+A) + diag(1e70*ones(1,m)); E = min(DD); h = zeros(c,1); h0 = sqrt(max(E)); % initial estimate of h for j=1:c S = SS(:,j); h1 = h0; F1 = derl(DD,E,h1,k,S); % derivative prprogress(fid,'\nparzenml: ML Smoothing Parameter Optimization\n') prprogress(fid,' h = %5.3f F = %8.3e \n',h1,F1); if abs(F1) < 1e-70 h = h1; prwarning(4,'jump out\n'); return; end a1 = (F1+m*k)*h1*h1; h2 = sqrt(a1/(m*k)); % second guess F2 = derl(DD,E,h2,k,S); % derivative prprogress(fid,' h = %5.3f F = %8.3e \n',h2,F2); if (abs(F2) < 1e-70) | (abs(1e0-h1/h2) < 1e-6) h(j) = h2; prwarning(4,'jump out\n'); break; end % find zero-point of derivative to optimize h^2 % stop if improvement is small, or h does not change significantly alf = 1; while abs(1e0-F2/F1) > 1e-4 & abs(1e0-h2/h1) > 1e-3 & abs(F2) > 1e-70 h3 = (h1*h1*h2*h2)*(F2-F1)/(F2*h2*h2-F1*h1*h1); if h3 < 0 % this should not happen h3 = sqrt((F2+m*k)*h2*h2/(m*k)); else h3 = sqrt(h3); end h3 = h2 +alf*(h3-h2); F3 = derl(DD,E,h3,k,S); prprogress(fid,' h = %5.3f F = %8.3e \n',h3,F3); F1 = F2; F2 = F3; h1 = h2; h2 = h3; alf = alf*0.99; % decrease step size end h(j) = h2; prprogress(fid,'parzenml finished') endreturnfunction F = derl(DD,E,h,k,S) % computation of the likelihood derivative for Parzen density % given distances D and their object minima E (for increased accuracy) % S are the object weigths c = size(S,2); % number of classes m = size(DD,1); Y = (DD-repmat(E,m,1))/(2*h*h); % correct for minimum distance to save accuracy IY = find(Y<20); % take small distance only, others don't contribute F = 0; for j=1:c P = zeros(m,m); P(IY) = exp(-Y(IY)); PP = S(:,j)'*P'; FU = repmat(realmax,1,m); J = find(PP~=0); FU(J) = S(J,j)'./PP(J); K = find(S(:,j)==0); FU(K) = zeros(1,length(K)); FF = (DD.*P)*S(:,j); F = F + (FU*FF)./(h*h); end F = F - sum(S(:))*k;return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -