📄 pcldc.m
字号:
%PCLDC Linear classifier using PC expansion on the joint data.% % W = PCLDC(A,N)% W = PCLDC(A,ALF)%% INPUT% A Dataset% N Number of eigenvectors% ALF Total explained variance (default: ALF = 0.9)%% OUTPUT% W Mapping% % DESCRIPTION% Finds the linear discriminant function W for the dataset A % computing the LDC on a projection of the data on the first N % eigenvectors of the total dataset (Principle Component Analysis).% % When ALF is supplied the number of eigenvalues is chosen such that at % least a part ALF of the total variance is explained. % % If N (ALF) is NaN it is optimised by REGOPTC.%% SEE ALSO% MAPPINGS, DATASETS, KLLDC, KLM, FISHERM, REGOPTC% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: pcldc.m,v 1.4 2007/06/13 21:59:42 duin Exp $function W = pcldc(a,n) prtrace(mfilename); if nargin < 2, n = []; end if nargin == 0 | isempty(a) W = mapping('pcldc',{n}); elseif isnan(n) % optimize regularisation parameter defs = {1}; parmin_max = [1,size(a,2)]; W = regoptc(a,mfilename,{n},defs,[1],parmin_max,testc([],'soft'),0); else islabtype(a,'crisp','soft'); isvaldfile(a,2,2); % at least 2 object per class, 2 classes a = testdatasize(a,'features'); a = setprior(a,getprior(a)); % Make a sequential classifier combining PCA and LDC: v = pca(a,n); W = v*ldc(a*v); W = setcost(W,a); end W = setname(W,'PC Bayes-Normal-1');return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -