📄 bpxnc.m
字号:
%BPXNC Back-propagation trained feed-forward neural net classifier% % [W,HIST] = BPXNC (A,UNITS,ITER,W_INI,T,FID)%% INPUT% A Dataset% UNITS Array indicating number of units in each hidden layer (default: [5])% ITER Number of iterations to train (default: inf)% W_INI Weight initialisation network mapping (default: [], meaning % initialisation by Matlab's neural network toolbox)% T Tuning set (default: [], meaning use A)% FID File descriptor to report progress to (default: 0, no report)%% OUTPUT% W Trained feed-forward neural network mapping% HIST Progress report (see below)%% DESCRIPTION % A feed-forward neural network classifier with length(N) hidden layers with % N(I) units in layer I is computed for the dataset A. Training is stopped % after ITER epochs (at least 50) or if the iteration number exceeds twice % that of the best classification result. This is measured by the labeled % tuning set T. If no tuning set is supplied A is used. W_INI is used, if % given, as network initialisation. Use [] if the standard Matlab % initialisation is desired. Progress is reported in file FID (default 0). %% The entire training sequence is returned in HIST (number of epochs, % classification error on A, classification error on T, MSE on A, MSE on T).% % Uses the Mathwork's Neural Network toolbox.%% SEE ALSO% MAPPINGS, DATASETS, LMNC, NEURC, RNNC, RBNC% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands% $Id: bpxnc.m,v 1.2 2006/03/08 22:06:58 duin Exp $function [w,hist] = bpxnc(varargin) prtrace(mfilename); [w,hist] = ffnc(mfilename,varargin{:}); return
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -