⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 reed_solomon.ps

📁 rs encoder in matlab 7,3
💻 PS
📖 第 1 页 / 共 5 页
字号:
y Fp(k)q Fo(\000)p Fq(1)1044 795 y Fs(\))15 b(with)g(all)i(the)eFr(x)1348 802 y Fp(i)1377 795 y Fs(distinct)i(and)e(non-)224851 y(zero.)34 b(If)20 b(w)o(e)g(w)o(eren't)f(w)o(orried)h(ab)q(out)g(errors,)g(one)g(alternativ)o(e)g(to)g(transmitting)224907 y(the)15 b(co)q(e\016cien)o(ts)h(of)e Fr(m)p Fs(\()pFr(x)p Fs(\))g(w)o(ould)i(b)q(e)f(to)f(ev)m(aluate)iFr(m)p Fs(\()p Fr(x)p Fs(\))e(at)g Fr(k)i Fs(kno)o(wn)f(p)q(oin)o(ts,)g(send)224 964 y(the)h Fr(k)h Fs(ev)m(aluations)g(of)fFr(m)p Fs(\()p Fr(x)p Fs(\))f(as)g(our)h(message,)f(and)h(then)h(reconstruct)e Fr(m)p Fs(\()p Fr(x)p Fs(\))g(from)2241020 y(those)c(ev)m(aluations.)20 b(This)12 b(approac)o(h)f(do)q(esn't)h(pro)o(vide)f(an)o(y)h(adv)m(an)o(tages)e(if)i(there)g(are)2241077 y(guaran)o(teed)f(to)f(b)q(e)h(no)g(errors,)g(but)f(it)i(can)f(b)q(e)g(extended)h(to)e(pro)o(vide)h(the)g(redundancy)2241133 y(necessary)23 b(to)f(correct)g(errors.)41 b(The)23b(w)o(a)o(y)f(w)o(e)g(will)i(get)e(our)h(redundancy)g(is)h(b)o(y)2241190 y(ev)m(aluating)18 b Fr(m)p Fs(\()p Fr(x)p Fs(\))d(at)h(2)pFr(s)g Fs(additional)i(distinct)f(non-zero)g(p)q(oin)o(ts;)g(so)f(that)f(what)h(w)o(e)224 1246 y(send)j(is)f Fr(n)f Fs(=)g Fr(k)cFs(+)f(2)p Fr(s)18 b Fs(ev)m(aluations)h Fn(f)p Fr(m)pFs(\()p Fr(x)967 1253 y Fq(0)986 1246 y Fs(\))p Fr(;)8b(:)g(:)g(:)k(;)c(m)p Fs(\()p Fr(x)1197 1253 y Fp(n)pFo(\000)p Fq(1)1264 1246 y Fs(\))p Fn(g)p Fs(,)18 b(where)gFr(x)1496 1253 y Fq(0)1515 1246 y Fr(;)8 b(:)g(:)g(:)13b(;)8 b(x)1651 1253 y Fp(n)p Fo(\000)p Fq(1)224 1303y Fs(are)15 b(distinct)h Fr(x)p Fs(-v)m(alues)h(agreed)e(up)q(on)h(b)q(efore)f(sending)i(the)e(message.)295 1359 y(W)l(e)f(will)i(reconstruct)e Fr(m)p Fs(\()p Fr(x)p Fs(\))f(in)i(the)g(follo)o(wing)g(w)o(a)o(y:)j(let)d(\()p Fr(y)1344 1366 y Fq(0)1363 1359y Fr(;)8 b(:)g(:)g(:)13 b(;)8 b(y)1495 1366 y Fp(n)pFo(\000)p Fq(1)1563 1359 y Fs(\))14 b(b)q(e)g(the)2241416 y(ev)m(aluations)20 b(receiv)o(ed,)h(with)f(at)e(most)g(most)hFr(s)g Fs(errors.)31 b(T)l(ry)19 b(to)f(\014nd)i(a)f(subset)g(of)2241472 y Fr(k)11 b Fs(+)e Fr(s)15 b Fs(\(or)f(more\))g(p)q(oin)o(ts)h(from)f Fn(f)p Fs(\()p Fr(x)853 1479 y Fq(0)872 1472y Fr(;)8 b(y)915 1479 y Fq(0)935 1472 y Fs(\))p Fr(;)g(:)g(:)g(:)k(;)cFs(\()p Fr(x)1106 1479 y Fp(n)p Fo(\000)p Fq(1)1173 1472y Fr(;)g(y)1216 1479 y Fp(n)p Fo(\000)p Fq(1)1284 1472y Fs(\))p Fn(g)14 b Fs(suc)o(h)h(that)g(a)f(degree-)2241528 y(\()p Fr(k)q Fs(-1\))f(p)q(olynomial)j(passes)e(through)g(the)g(p)q(oin)o(ts.)20 b(Suc)o(h)15 b(a)e(subset)i(m)o(ust)e(exist,)h(since)224 1585 y(w)o(e)20 b(start)f(with)h Fr(k)15 b Fs(+)e(2)pFr(s)20 b Fs(p)q(oin)o(ts)h(and)f(at)f(most)h Fr(s)gFs(p)q(oin)o(ts)g(are)g(in)h(error.)34 b(Once)21 b(w)o(e)2241641 y(ha)o(v)o(e)g(suc)o(h)g(a)g(subset,)h(w)o(e)f(kno)o(w)f(that)h(it)g(matc)o(hes)g(ev)m(aluations)h(of)f Fr(m)p Fs(\()pFr(x)p Fs(\))f(for)g(at)224 1698 y(least)c Fr(k)g Fs(distinct)gFr(x)p Fs(-v)m(alues,)h(b)q(ecause)f(at)e(most)h Fr(s)gFs(of)g(the)h Fr(k)11 b Fs(+)f Fr(s)16 b Fs(p)q(oin)o(ts)g(are)e(in)j(error.)224 1754 y(Since)f Fr(k)f Fs(ev)m(aluations)g(uniquely)i(determine)e(a)f(degree-\()p Fr(k)9 b Fn(\000)f Fs(1\))14b(p)q(olynomial,)h(w)o(e)f(can)224 1811 y(reconstruct)h(the)g(correct)gFr(m)p Fs(\()p Fr(x)p Fs(\).)295 1867 y(The)e(algorithm)h(just)f(describ)q(ed)i(has)f(the)f(righ)o(t)g(\015a)o(v)o(or,)g(but)g(the)h(step)f(of)g(\014nding)224 1924 y(a)21 b(subset)h(of)f(consisten)o(t)h(p)q(oin)o(ts)g(is)g(computationally)g(di\016cult.)40b(Later)21 b(on)h(w)o(e'll)224 1980 y(impro)o(v)o(e)14b(this)h(algorithm)f(and)g(talk)g(ab)q(out)g(mo)q(dern)h(RS)g(co)q(ding)g(implemen)o(tations;)224 2037 y(but)h(\014rst)g(let's)g(\015esh)g(out)g(the)g(construction)g(of)g(the)g(\014eld)h(o)o(v)o(er)e(whic)o(h)i(w)o(e)f(tak)o(e)f(our)224 2093 y(p)q(olynomial)iFr(m)p Fs(\()p Fr(x)p Fs(\).)224 2236 y Ft(3)67 b(Constructing)23b(the)g(\014eld)g Fm(F)224 2339 y Fl(3.1)56 b(Refresher)17b(on)i(\014elds)224 2425 y Fs(W)l(e)d(in)o(tro)q(duce)g(here)g(the)g(basic)g(algebraic)g(de\014nitions)h(whic)o(h)f(will)i(b)q(e)e(used)g(in)g(this)224 2482 y(section.)960 2613 y(2)p eop%%Page: 3 33 2 bop 224 286 a Fk(Groups.)45 b Fs(A)14 b(group)g(is)h(a)f(tuple)h(\()p Fr(G;)8 b Fn(\002)p Fr(;)g(e)p Fs(\),)k(where)jFr(G)f Fs(is)h(a)f(set)g(of)g(elemen)o(ts,)g Fn(\002)hFs(is)g(a)224 343 y(binary)i(op)q(erator)e(on)h Fr(G)pFs(,)g(and)g Fr(e)e Fn(2)g Fr(G)i Fs(is)h(a)e(designated)i(iden)o(tit)o(y)g(elemen)o(t.)23 b Fr(G)16 b Fs(m)o(ust)224 399 y(ha)o(v)o(e)f(the)g(follo)o(wing)h(prop)q(erties:)280 486 y(1.)22 b Fn(\002)15b Fs(is)h(closed.)21 b(F)l(or)14 b(all)i Fr(a;)8 b(b)kFn(2)h Fr(G)p Fs(,)h Fr(a)c Fn(\002)h Fr(b)h Fn(2)h Fr(G)pFs(.)280 578 y(2.)22 b Fn(\002)15 b Fs(is)h(asso)q(ciativ)o(e.)k(F)l(or)15 b(all)h Fr(a;)8 b(b;)g(c)i Fn(2)j Fr(G)p Fs(,)i(\()pFr(a)9 b Fn(\002)i Fr(b)p Fs(\))e Fn(\002)i Fr(c)h Fs(=)hFr(a)d Fn(\002)g Fs(\()p Fr(b)g Fn(\002)g Fr(c)p Fs(\).)280669 y(3.)22 b(F)l(or)14 b(all)i Fr(a)d Fn(2)g Fr(G)pFs(,)i Fr(a)10 b Fn(\002)g Fr(e)j Fs(=)g Fr(e)d Fn(\002)hFr(a)h Fs(=)h Fr(a)p Fs(.)280 760 y(4.)22 b(F)l(or)d(eac)o(h)hFr(a)h Fn(2)g Fr(G)f Fs(there)g(is)h(an)f(elemen)o(t)hFr(a)1120 743 y Fo(\000)p Fq(1)1188 760 y Fn(2)g Fr(G)eFs(suc)o(h)i(that)e Fr(a)14 b Fn(\002)f Fr(a)1615 743y Fo(\000)p Fq(1)1683 760 y Fs(=)338 816 y Fr(a)362 800y Fo(\000)p Fq(1)419 816 y Fn(\002)e Fr(a)h Fs(=)h Fr(e)iFs(\()p Fr(a)627 800 y Fo(\000)p Fq(1)690 816 y Fs(is)g(called)i(an)e(in)o(v)o(erse)h(of)f Fr(a)p Fs(\).)224 903 y(W)l(e)g(will)h(often)e(abbreviate)g Fr(a)9 b Fn(\002)g Fr(b)k Fs(as)h Fr(ab)gFs(when)h(it's)f(ob)o(vious)h(what)e(the)i(op)q(erator)e(is.)2241022 y Fk(Fields.)46 b Fs(A)19 b(\014eld)h(is)g(a)f(tuple)h(\()pFr(F)q(;)8 b Fs(+)p Fr(;)g Fn(\002)p Fr(;)g Fs(0)p Fr(;)gFs(1\),)17 b(where)i Fr(F)26 b Fs(is)19 b(the)h(set)e(of)h(elemen)o(ts,)224 1079 y(+)f(is)h(the)f(addition)h(op)q(erator,)fFn(\002)g Fs(is)h(the)f(m)o(ultiplication)i(op)q(erator,)e(0)fFn(2)g Fr(F)25 b Fs(is)18 b(the)224 1135 y(additiv)o(e)f(iden)o(tit)o(y)l(,)e(and)h(1)d Fn(2)g Fr(F)22 b Fs(is)15 b(the)h(m)o(ultiplicativ)o(e)i(iden)o(tit)o(y)l(.)j Fr(F)h Fs(m)o(ust)14 b(ha)o(v)o(e)h(the)2241192 y(follo)o(wing)h(prop)q(erties:)280 1279 y(1.)22b(\()p Fr(F)q(;)8 b Fs(+)p Fr(;)g Fs(0\))13 b(forms)i(a)g(group.)2801370 y(2.)22 b Fn(\002)15 b Fs(is)h(asso)q(ciativ)o(e)g(and)f(distributes)h(o)o(v)o(er)f(+.)280 1461 y(3.)22 b(\()pFr(F)16 b Fn(n)10 b(f)p Fs(0)p Fn(g)p Fr(;)e Fn(\002)pFr(;)g Fs(1\))k(forms)j(a)g(group.)224 1548 y(Note)i(w)o(e)f(will)i(often)f(sa)o(y)f(\\the)h(\014eld)h Fr(F)6 b Fs(")17b(when)g(w)o(e)f(mean)h(\\the)g(\014eld)h(whose)e(set)h(is)2241604 y Fr(F)6 b Fs(,)15 b(with)h(the)f(standard)g(op)q(erators)f(for)h(that)f(set".)295 1661 y(Fields)k(that)e(w)o(e)h(commonly)g(w)o(ork)f(with)i(include)h(the)e(real,)h(complex,)g(and)f(ra-)2241717 y(tional)h(n)o(um)o(b)q(ers.)27 b(The)18 b(set)f(of)g(in)o(tegers)g(is)h(not)f(a)g(\014eld.)28 b(It)18 b(satis\014es)f(the)h(\014rst)f(t)o(w)o(o)224 1774 y(prop)q(erties,)f(but)g(fails)h(the)f(third)g(prop)q(ert)o(y)f(b)q(ecause)i(not)f(all)g(in)o(tegers)g(ha)o(v)o(e)g(m)o(ulti-)224 1830 y(plicativ)o(e)k(in)o(v)o(erses.)28 b(A)18b(set)f(lik)o(e)i(the)f(in)o(tegers)g(whic)o(h)h(satis\014es)f(the)g(\014rst)g(t)o(w)o(o)e(\014eld)224 1887 y(prop)q(erties)g(is)g(called)h(a)d(\\ring".)224 2007 y Fl(3.2)56 b(Galois)18 b(\014elds)2242093 y Fs(W)l(e)i(no)o(w)g(turn)g(to)g(the)g(question)h(of)f(constructing)g(the)h(\014eld)g Fr(F)27 b Fs(from)19b(whic)o(h)i(the)224 2149 y(co)q(e\016cien)o(ts)d(of)fFr(m)p Fs(\()p Fr(x)p Fs(\))g(are)g(dra)o(wn.)26 b(A)17b(basic)h(result)g(from)f(n)o(um)o(b)q(er)g(theory)g(is)h(that)2242206 y(if)g Fr(p)f Fs(is)h(prime,)g(then)f(the)g(set)g(of)g(in)o(tegers)g(mo)q(dulo)h Fr(p)f Fs(\(denoted)h Fj(Z)14092213 y Fp(p)1426 2206 y Fs(\))f(is)h(a)e(\014eld.)28b(So)224 2262 y(if)16 b(there)g(are)f(a)h(prime)g(n)o(um)o(b)q(er)gFr(p)f Fs(of)g(p)q(ossible)j(digits,)e(w)o(e)f(can)h(use)gFj(Z)1453 2269 y Fp(p)1485 2262 y Fs(as)f(our)h(\014eld.)2242319 y(Ho)o(w)o(ev)o(er,)f(that)g(is)i(true)f(if)g(and)h(only)f(if)hFr(p)f Fs(is)g(prime.)23 b(Unfortunately)l(,)17 b(in)g(computer)2242375 y(applications)e(w)o(e)f(are)f(lik)o(ely)i(to)e(w)o(an)o(t)g(digits)h(that)f(w)o(e)g(can)h(enco)q(de)h(with)f Fr(r)f(>)gFs(1)g(bits;)224 2432 y(for)j(instance,)h(8-bit)g(c)o(haracters.)22b(This)17 b(means)g(w)o(e)f(ha)o(v)o(e)g(a)g(non-prime)h(n)o(um)o(b)q(er)g(2)1700 2415 y Fp(r)224 2488 y Fs(of)e(p)q(ossible)i(digits.)9602613 y(3)p eop%%Page: 4 44 3 bop 295 286 a Fs(F)l(ortunately)l(,)24 b(it)f(can)f(b)q(e)i(pro)o(v)o(en)e(that)g(for)g(an)o(y)g(prime)h Fr(p)f Fs(and)h(an)o(y)f(natural)224 343 y(n)o(um)o(b)q(er)16 b Fr(r)h Fs(there)f(exists)g(a)g(\014nite)h(\014eld)g(with)f Fr(p)1053 326 y Fp(r)1088343 y Fs(n)o(um)o(b)q(ers.)22 b(\(In)16 b(fact)f(the)h(rev)o(erse)g(is)224 399 y(also)h(true|ev)o(ery)h(\014nite)g(\014eld)g(has)fFr(p)890 383 y Fp(r)926 399 y Fs(n)o(um)o(b)q(ers,)g(where)hFr(p)e Fs(is)i(prime\).)26 b(There)17 b(is)h(a)224 456y(w)o(a)o(y)c(to)g(generate)h(suc)o(h)g(a)f(\014eld.)21b(It)15 b(is)h(called)g(a)e(Galois)i(\014eld,)f(and)g(it)g(can)g(b)q(e)h(sho)o(wn)224 512 y(that)f(an)o(y)g(\014nite)h(\014eld)g(of)f(size)hFr(p)784 496 y Fp(r)818 512 y Fs(is)g(isomorphic)g(to)e(a)h(Galois)h(\014eld.)295 569 y(Galois)11 b(\014elds)h(are)f(constructed)g(with)g(the)g(help)h(of)f Fj(Z)1200 576 y Fp(p)1217 569 y Fs([)pFr(x)p Fs(],)g(the)g(set)f(of)h(p)q(olynomials)224 625y(with)16 b(co)q(e\016cien)o(ts)g(in)g Fj(Z)641 632 yFp(p)658 625 y Fs(.)295 682 y(W)l(e're)i(used)i(to)e(dealing)j(with)e(p)q(olynomials)h(with)g(real)f(co)q(e\016cien)o(ts)h(\(p)q(olyno-)224738 y(mials)c(in)g Fj(R)m Fs([)o Fr(x)p Fs(]\),)11 b(so)k(the)g(arithmetic)g(of)g(p)q(olynomials)i(in)e Fj(Z)1263 745y Fp(p)1280 738 y Fs([)p Fr(x)p Fs(])f(ma)o(y)g(seem)i(coun)o(ter-)224795 y(in)o(tuitiv)o(e.)21 b(T)l(ak)o(e)15 b Fr(F)k Fs(=)13b Fj(Z)659 802 y Fq(2)676 795 y Fs(,)i(for)f(instance.)295851 y(A)h(refresher)g(on)g(ho)o(w)g(arithmetic)h(mo)q(dulo)g(2)f(w)o(orks:)850 953 y(0)10 b(+)h(0)41 b(=)h(0)850 1022 y(0)10b(+)h(1)41 b(=)h(1)850 1091 y(1)10 b(+)h(0)41 b(=)h(1)8501160 y(1)10 b(+)h(1)41 b(=)h(0)224 1262 y(No)o(w)15 b(for)f(example,)i(let)g Fr(a;)8 b(b)j Fn(2)i Fj(Z)804 1269 y Fq(2)8211262 y Fs([)p Fr(x)p Fs(],)h Fr(a)p Fs(\()p Fr(x)p Fs(\))e(=)hFr(x)1072 1245 y Fq(2)1102 1262 y Fs(+)d Fr(x)p Fs(,)15b Fr(b)p Fs(\()p Fr(x)p Fs(\))c(=)j Fr(x)p Fs(.)19 b(Then)d(w)o(e)f(can)h(do)224 1318 y(the)f(addition)742 1408 y Fr(a)pFs(\()p Fr(x)p Fs(\))41 b(=)h(1)p Fr(x)995 1391 y Fq(2)10241408 y Fs(+)11 b(1)p Fr(x)747 1464 y(b)p Fs(\()p Fr(x)pFs(\))40 b(=)i(0)p Fr(x)995 1448 y Fq(2)1024 1464 y Fs(+)11b(1)p Fr(x)606 1521 y(a)p Fs(\()p Fr(x)p Fs(\))e(+)iFr(b)p Fs(\()p Fr(x)p Fs(\))40 b(=)i(1)p Fr(x)995 1504y Fq(2)1024 1521 y Fs(+)11 b(0)p Fr(x)41 b Fs(=)13 bFr(x)1234 1504 y Fq(2)224 1621 y Fs(whic)o(h)g(is)g(of)f(course)g(a)g(di\013eren)o(t)g(result)h(than)f(w)o(e)g(w)o(ould)g(ha)o(v)o(e)g(gotten)g(if)g Fr(a)p Fs(\()p Fr(x)p Fs(\))p Fr(;)c(b)pFs(\()p Fr(x)p Fs(\))i Fn(2)224 1678 y Fj(R)m Fs([)pFr(x)p Fs(])o(;)i(in)k(that)f(case)g(w)o(e)g(w)o(ould)g(ha)o(v)o(e)g(had)h(\()p Fr(x)1018 1661 y Fq(2)1047 1678 y Fs(+)10b Fr(x)p Fs(\))g(+)h(\()p Fr(x)p Fs(\))h(=)h Fr(x)13401661 y Fq(2)1369 1678 y Fs(+)e(2)p Fr(x)p Fs(.)295 1734y(No)o(w)16 b(to)g(de\014ne)i(mo)q(dulo)f(arithmetic)h(for)e(p)q(olynomials:)24 b Fr(a)p Fs(\()p Fr(x)p Fs(\))16 b(mo)q(dulo)iFr(g)r Fs(\()p Fr(x)p Fs(\))d(is)224 1791 y(another)h(p)q(olynomial)jFr(r)q Fs(\()p Fr(x)p Fs(\))d(with)h(degree)g(strictly)g(less)g(than)gFr(g)r Fs(\()p Fr(x)p Fs(\),)e(and)i(satisfying)224 1847y Fr(a)p Fs(\()p Fr(x)p Fs(\))12 b(=)h Fr(g)r Fs(\()pFr(x)p Fs(\))p Fr(q)r Fs(\()p Fr(x)p Fs(\))6 b(+)g Fr(r)qFs(\()p Fr(x)p Fs(\))11 b(for)h(some)h(p)q(olynomial)iFr(q)r Fs(\()p Fr(x)p Fs(\).)j Fk(Exercise:)

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -