⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rs6000.h

📁 linux下的gcc编译器
💻 H
📖 第 1 页 / 共 5 页
字号:
      global_regs[SPEFSCR_REGNO] = 1;					\      fixed_regs[FIXED_SCRATCH]						\        = call_used_regs[FIXED_SCRATCH]					\	= call_really_used_regs[FIXED_SCRATCH] = 1; 			\    }                                                                   \  if (! TARGET_ALTIVEC)							\    {									\      for (i = FIRST_ALTIVEC_REGNO; i <= LAST_ALTIVEC_REGNO; ++i)	\	fixed_regs[i] = call_used_regs[i] = call_really_used_regs[i] = 1; \      call_really_used_regs[VRSAVE_REGNO] = 1;				\    }									\  if (TARGET_ALTIVEC_ABI)						\    for (i = FIRST_ALTIVEC_REGNO; i < FIRST_ALTIVEC_REGNO + 20; ++i)	\      call_used_regs[i] = call_really_used_regs[i] = 1;			\}/* Specify the registers used for certain standard purposes.   The values of these macros are register numbers.  *//* RS/6000 pc isn't overloaded on a register that the compiler knows about.  *//* #define PC_REGNUM  *//* Register to use for pushing function arguments.  */#define STACK_POINTER_REGNUM 1/* Base register for access to local variables of the function.  */#define FRAME_POINTER_REGNUM 31/* Value should be nonzero if functions must have frame pointers.   Zero means the frame pointer need not be set up (and parms   may be accessed via the stack pointer) in functions that seem suitable.   This is computed in `reload', in reload1.c.  */#define FRAME_POINTER_REQUIRED 0/* Base register for access to arguments of the function.  */#define ARG_POINTER_REGNUM 67/* Place to put static chain when calling a function that requires it.  */#define STATIC_CHAIN_REGNUM 11/* Link register number.  */#define LINK_REGISTER_REGNUM 65/* Count register number.  */#define COUNT_REGISTER_REGNUM 66/* Place that structure value return address is placed.   On the RS/6000, it is passed as an extra parameter.  */#define STRUCT_VALUE 0/* Define the classes of registers for register constraints in the   machine description.  Also define ranges of constants.   One of the classes must always be named ALL_REGS and include all hard regs.   If there is more than one class, another class must be named NO_REGS   and contain no registers.   The name GENERAL_REGS must be the name of a class (or an alias for   another name such as ALL_REGS).  This is the class of registers   that is allowed by "g" or "r" in a register constraint.   Also, registers outside this class are allocated only when   instructions express preferences for them.   The classes must be numbered in nondecreasing order; that is,   a larger-numbered class must never be contained completely   in a smaller-numbered class.   For any two classes, it is very desirable that there be another   class that represents their union.  *//* The RS/6000 has three types of registers, fixed-point, floating-point,   and condition registers, plus three special registers, MQ, CTR, and the   link register.   However, r0 is special in that it cannot be used as a base register.   So make a class for registers valid as base registers.   Also, cr0 is the only condition code register that can be used in   arithmetic insns, so make a separate class for it.  */enum reg_class{  NO_REGS,  BASE_REGS,  GENERAL_REGS,  FLOAT_REGS,  ALTIVEC_REGS,  VRSAVE_REGS,  VSCR_REGS,  SPE_ACC_REGS,  SPEFSCR_REGS,  NON_SPECIAL_REGS,  MQ_REGS,  LINK_REGS,  CTR_REGS,  LINK_OR_CTR_REGS,  SPECIAL_REGS,  SPEC_OR_GEN_REGS,  CR0_REGS,  CR_REGS,  NON_FLOAT_REGS,  XER_REGS,  ALL_REGS,  LIM_REG_CLASSES};#define N_REG_CLASSES (int) LIM_REG_CLASSES/* Give names of register classes as strings for dump file.  */#define REG_CLASS_NAMES							\{									\  "NO_REGS",								\  "BASE_REGS",								\  "GENERAL_REGS",							\  "FLOAT_REGS",								\  "ALTIVEC_REGS",							\  "VRSAVE_REGS",							\  "VSCR_REGS",								\  "SPE_ACC_REGS",                                                       \  "SPEFSCR_REGS",                                                       \  "NON_SPECIAL_REGS",							\  "MQ_REGS",								\  "LINK_REGS",								\  "CTR_REGS",								\  "LINK_OR_CTR_REGS",							\  "SPECIAL_REGS",							\  "SPEC_OR_GEN_REGS",							\  "CR0_REGS",								\  "CR_REGS",								\  "NON_FLOAT_REGS",							\  "XER_REGS",								\  "ALL_REGS"								\}/* Define which registers fit in which classes.   This is an initializer for a vector of HARD_REG_SET   of length N_REG_CLASSES.  */#define REG_CLASS_CONTENTS						     \{									     \  { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */	     \  { 0xfffffffe, 0x00000000, 0x00000008, 0x00000000 }, /* BASE_REGS */	     \  { 0xffffffff, 0x00000000, 0x00000008, 0x00000000 }, /* GENERAL_REGS */     \  { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */       \  { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */     \  { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */	     \  { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */	     \  { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */     \  { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */     \  { 0xffffffff, 0xffffffff, 0x00000008, 0x00000000 }, /* NON_SPECIAL_REGS */ \  { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */	     \  { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */	     \  { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */	     \  { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \  { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */     \  { 0xffffffff, 0x00000000, 0x0000000f, 0x00000000 }, /* SPEC_OR_GEN_REGS */ \  { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */	     \  { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */	     \  { 0xffffffff, 0x00000000, 0x0000efff, 0x00000000 }, /* NON_FLOAT_REGS */   \  { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */	     \  { 0xffffffff, 0xffffffff, 0xffffffff, 0x00003fff }  /* ALL_REGS */	     \}/* The same information, inverted:   Return the class number of the smallest class containing   reg number REGNO.  This could be a conditional expression   or could index an array.  */#define REGNO_REG_CLASS(REGNO)			\ ((REGNO) == 0 ? GENERAL_REGS			\  : (REGNO) < 32 ? BASE_REGS			\  : FP_REGNO_P (REGNO) ? FLOAT_REGS		\  : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS	\  : (REGNO) == CR0_REGNO ? CR0_REGS		\  : CR_REGNO_P (REGNO) ? CR_REGS		\  : (REGNO) == MQ_REGNO ? MQ_REGS		\  : (REGNO) == LINK_REGISTER_REGNUM ? LINK_REGS	\  : (REGNO) == COUNT_REGISTER_REGNUM ? CTR_REGS	\  : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS	\  : (REGNO) == XER_REGNO ? XER_REGS		\  : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS	\  : (REGNO) == VSCR_REGNO ? VRSAVE_REGS	\  : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS	\  : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS	\  : NO_REGS)/* The class value for index registers, and the one for base regs.  */#define INDEX_REG_CLASS GENERAL_REGS#define BASE_REG_CLASS BASE_REGS/* Get reg_class from a letter such as appears in the machine description.  */#define REG_CLASS_FROM_LETTER(C) \  ((C) == 'f' ? FLOAT_REGS	\   : (C) == 'b' ? BASE_REGS	\   : (C) == 'h' ? SPECIAL_REGS	\   : (C) == 'q' ? MQ_REGS	\   : (C) == 'c' ? CTR_REGS	\   : (C) == 'l' ? LINK_REGS	\   : (C) == 'v' ? ALTIVEC_REGS	\   : (C) == 'x' ? CR0_REGS	\   : (C) == 'y' ? CR_REGS	\   : (C) == 'z' ? XER_REGS	\   : NO_REGS)/* The letters I, J, K, L, M, N, and P in a register constraint string   can be used to stand for particular ranges of immediate operands.   This macro defines what the ranges are.   C is the letter, and VALUE is a constant value.   Return 1 if VALUE is in the range specified by C.   `I' is a signed 16-bit constant   `J' is a constant with only the high-order 16 bits nonzero   `K' is a constant with only the low-order 16 bits nonzero   `L' is a signed 16-bit constant shifted left 16 bits   `M' is a constant that is greater than 31   `N' is a positive constant that is an exact power of two   `O' is the constant zero   `P' is a constant whose negation is a signed 16-bit constant */#define CONST_OK_FOR_LETTER_P(VALUE, C)					\   ( (C) == 'I' ? (unsigned HOST_WIDE_INT) ((VALUE) + 0x8000) < 0x10000	\   : (C) == 'J' ? ((VALUE) & (~ (unsigned HOST_WIDE_INT) 0xffff0000)) == 0 \   : (C) == 'K' ? ((VALUE) & (~ (HOST_WIDE_INT) 0xffff)) == 0		\   : (C) == 'L' ? (((VALUE) & 0xffff) == 0				\		   && ((VALUE) >> 31 == -1 || (VALUE) >> 31 == 0))	\   : (C) == 'M' ? (VALUE) > 31						\   : (C) == 'N' ? (VALUE) > 0 && exact_log2 (VALUE) >= 0		\   : (C) == 'O' ? (VALUE) == 0						\   : (C) == 'P' ? (unsigned HOST_WIDE_INT) ((- (VALUE)) + 0x8000) < 0x10000 \   : 0)/* Similar, but for floating constants, and defining letters G and H.   Here VALUE is the CONST_DOUBLE rtx itself.   We flag for special constants when we can copy the constant into   a general register in two insns for DF/DI and one insn for SF.   'H' is used for DI/DF constants that take 3 insns.  */#define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C)				\  (  (C) == 'G' ? (num_insns_constant (VALUE, GET_MODE (VALUE))		\		   == ((GET_MODE (VALUE) == SFmode) ? 1 : 2))		\   : (C) == 'H' ? (num_insns_constant (VALUE, GET_MODE (VALUE)) == 3)	\   : 0)/* Optional extra constraints for this machine.   'Q' means that is a memory operand that is just an offset from a reg.   'R' is for AIX TOC entries.   'S' is a constant that can be placed into a 64-bit mask operand   'T' is a constant that can be placed into a 32-bit mask operand   'U' is for V.4 small data references.   't' is for AND masks that can be performed by two rldic{l,r} insns.  */#define EXTRA_CONSTRAINT(OP, C)						\  ((C) == 'Q' ? GET_CODE (OP) == MEM && GET_CODE (XEXP (OP, 0)) == REG	\   : (C) == 'R' ? LEGITIMATE_CONSTANT_POOL_ADDRESS_P (OP)		\   : (C) == 'S' ? mask64_operand (OP, DImode)				\   : (C) == 'T' ? mask_operand (OP, SImode)				\   : (C) == 'U' ? (DEFAULT_ABI == ABI_V4				\		   && small_data_operand (OP, GET_MODE (OP)))		\   : (C) == 't' ? (mask64_2_operand (OP, DImode)			\		   && (fixed_regs[CR0_REGNO]				\		       || !logical_operand (OP, DImode))		\		   && !mask64_operand (OP, DImode))			\   : 0)/* Given an rtx X being reloaded into a reg required to be   in class CLASS, return the class of reg to actually use.   In general this is just CLASS; but on some machines   in some cases it is preferable to use a more restrictive class.   On the RS/6000, we have to return NO_REGS when we want to reload a   floating-point CONST_DOUBLE to force it to be copied to memory.     We also don't want to reload integer values into floating-point   registers if we can at all help it.  In fact, this can   cause reload to abort, if it tries to generate a reload of CTR   into a FP register and discovers it doesn't have the memory location   required.   ??? Would it be a good idea to have reload do the converse, that is   try to reload floating modes into FP registers if possible? */#define PREFERRED_RELOAD_CLASS(X,CLASS)			\  (((GET_CODE (X) == CONST_DOUBLE			\     && GET_MODE_CLASS (GET_MODE (X)) == MODE_FLOAT)	\    ? NO_REGS 						\    : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT 	\       && (CLASS) == NON_SPECIAL_REGS)			\    ? GENERAL_REGS					\    : (CLASS)))/* Return the register class of a scratch register needed to copy IN into   or out of a register in CLASS in MODE.  If it can be done directly,   NO_REGS is returned.  */#define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \  secondary_reload_class (CLASS, MODE, IN)/* If we are copying between FP or AltiVec registers and anything   else, we need a memory location.  */#define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) 		\ ((CLASS1) != (CLASS2) && ((CLASS1) == FLOAT_REGS		\			   || (CLASS2) == FLOAT_REGS		\			   || (CLASS1) == ALTIVEC_REGS		\			   || (CLASS2) == ALTIVEC_REGS))/* Return the maximum number of consecutive registers   needed to represent mode MODE in a register of class CLASS.   On RS/6000, this is the size of MODE in words,   except in the FP regs, where a single reg is enough for two words.  */#define CLASS_MAX_NREGS(CLASS, MODE)					\ (((CLASS) == FLOAT_REGS) 						\  ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \  : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))/* Return a class of registers that cannot change FROM mode to TO mode.  */#define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS)			\  (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO)				\   ? reg_classes_intersect_p (FLOAT_REGS, CLASS)			\   : (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1		\   ? reg_classes_intersect_p (GENERAL_REGS, CLASS) 			\   : 0)/* Stack layout; function entry, exit and calling.  *//* Enumeration to give which calling sequence to use.  */enum rs6000_abi {  ABI_NONE,  ABI_AIX,			/* IBM's AIX */  ABI_AIX_NODESC,		/* AIX calling sequence minus

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -