⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pa32-regs.h

📁 linux下的gcc编译器
💻 H
字号:
/* Standard register usage.  *//* Number of actual hardware registers.   The hardware registers are assigned numbers for the compiler   from 0 to just below FIRST_PSEUDO_REGISTER.   All registers that the compiler knows about must be given numbers,   even those that are not normally considered general registers.   HP-PA 1.0 has 32 fullword registers and 16 floating point   registers. The floating point registers hold either word or double   word values.   16 additional registers are reserved.   HP-PA 1.1 has 32 fullword registers and 32 floating point   registers. However, the floating point registers behave   differently: the left and right halves of registers are addressable   as 32 bit registers. So, we will set things up like the 68k which   has different fp units: define separate register sets for the 1.0   and 1.1 fp units.  */#define FIRST_PSEUDO_REGISTER 89  /* 32 general regs + 56 fp regs +				     + 1 shift reg *//* 1 for registers that have pervasive standard uses   and are not available for the register allocator.   On the HP-PA, these are:   Reg 0	= 0 (hardware). However, 0 is used for condition code,                  so is not fixed.   Reg 1	= ADDIL target/Temporary (hardware).   Reg 2	= Return Pointer   Reg 3	= Frame Pointer   Reg 4	= Frame Pointer (>8k varying frame with HP compilers only)   Reg 4-18	= Preserved Registers   Reg 19	= Linkage Table Register in HPUX 8.0 shared library scheme.   Reg 20-22	= Temporary Registers   Reg 23-26	= Temporary/Parameter Registers   Reg 27	= Global Data Pointer (hp)   Reg 28	= Temporary/Return Value register   Reg 29	= Temporary/Static Chain/Return Value register #2   Reg 30	= stack pointer   Reg 31	= Temporary/Millicode Return Pointer (hp)   Freg 0-3	= Status Registers	 -- Not known to the compiler.   Freg 4-7	= Arguments/Return Value   Freg 8-11	= Temporary Registers   Freg 12-15	= Preserved Registers   Freg 16-31	= Reserved   On the Snake, fp regs are   Freg 0-3	= Status Registers	-- Not known to the compiler.   Freg 4L-7R	= Arguments/Return Value   Freg 8L-11R	= Temporary Registers   Freg 12L-21R	= Preserved Registers   Freg 22L-31R = Temporary Registers*/#define FIXED_REGISTERS  \ {0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 1, 0, 0, 1, 0, \  /* fp registers */	  \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0}/* 1 for registers not available across function calls.   These must include the FIXED_REGISTERS and also any   registers that can be used without being saved.   The latter must include the registers where values are returned   and the register where structure-value addresses are passed.   Aside from that, you can include as many other registers as you like.  */#define CALL_USED_REGISTERS  \ {1, 1, 1, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 1, 1, 1, 1, 1, \  1, 1, 1, 1, 1, 1, 1, 1, \  /* fp registers */	  \  1, 1, 1, 1, 1, 1, 1, 1, \  1, 1, 1, 1, 1, 1, 1, 1, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 0, 0, 0, 0, \  0, 0, 0, 0, 1, 1, 1, 1, \  1, 1, 1, 1, 1, 1, 1, 1, \  1, 1, 1, 1, 1, 1, 1, 1, \  1}#define CONDITIONAL_REGISTER_USAGE \{						\  int i;					\  if (!TARGET_PA_11)				\    {						\      for (i = 56; i < 88; i++) 		\	fixed_regs[i] = call_used_regs[i] = 1; 	\      for (i = 33; i < 88; i += 2) 		\	fixed_regs[i] = call_used_regs[i] = 1; 	\    }						\  if (TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT)\    {						\      for (i = 32; i < 88; i++) 		\	fixed_regs[i] = call_used_regs[i] = 1; 	\    }						\  if (flag_pic)					\    fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;	\}/* Allocate the call used registers first.  This should minimize   the number of registers that need to be saved (as call used   registers will generally not be allocated across a call).   Experimentation has shown slightly better results by allocating   FP registers first.     FP registers are ordered so that all L registers are selected before   R registers.  This works around a false dependency interlock on the   PA8000 when accessing the high and low parts of an FP register   independently.  */#define REG_ALLOC_ORDER \ {					\  /* caller-saved fp regs.  */		\  68, 70, 72, 74, 76, 78, 80, 82,	\  84, 86, 40, 42, 44, 46, 32, 34,	\  36, 38,				\  69, 71, 73, 75, 77, 79, 81, 83,	\  85, 87, 41, 43, 45, 47, 33, 35,	\  37, 39,				\  /* caller-saved general regs.  */	\  19, 20, 21, 22, 23, 24, 25, 26,	\  27, 28, 29, 31,  2,			\  /* callee-saved fp regs.  */		\  48, 50, 52, 54, 56, 58, 60, 62,	\  64, 66,				\  49, 51, 53, 55, 57, 59, 61, 63,	\  65, 67,				\  /* callee-saved general regs.  */	\   3,  4,  5,  6,  7,  8,  9, 10, 	\  11, 12, 13, 14, 15, 16, 17, 18,	\  /* special registers.  */		\   1, 30,  0, 88}/* Return number of consecutive hard regs needed starting at reg REGNO   to hold something of mode MODE.   This is ordinarily the length in words of a value of mode MODE   but can be less for certain modes in special long registers.   On the HP-PA, ordinary registers hold 32 bits worth;   The floating point registers are 64 bits wide. Snake fp regs are 32   bits wide */#define HARD_REGNO_NREGS(REGNO, MODE)					\  (FP_REGNO_P (REGNO)							\   ? (!TARGET_PA_11 ? 1 : (GET_MODE_SIZE (MODE) + 4 - 1) / 4)		\   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))/* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.   On the HP-PA, the cpu registers can hold any mode.  For DImode, we   choose a set of general register that includes the incoming arguments   and the return value.  We specify a set with no overlaps so that we don't   have to specify that the destination register in patterns using this mode   is an early clobber.  */#define HARD_REGNO_MODE_OK(REGNO, MODE) \  ((REGNO) == 0 ? (MODE) == CCmode || (MODE) == CCFPmode		\   /* On 1.0 machines, don't allow wide non-fp modes in fp regs.  */	\   : !TARGET_PA_11 && FP_REGNO_P (REGNO)				\     ? GET_MODE_SIZE (MODE) <= 4 || GET_MODE_CLASS (MODE) == MODE_FLOAT	\   : FP_REGNO_P (REGNO)							\     ? GET_MODE_SIZE (MODE) <= 4 || ((REGNO) & 1) == 0			\   : (GET_MODE_SIZE (MODE) <= UNITS_PER_WORD				\      || (GET_MODE_SIZE (MODE) == 2 * UNITS_PER_WORD			\	  && ((((REGNO) & 1) == 1 && (REGNO) <= 25) || (REGNO) == 28))	\      || (GET_MODE_SIZE (MODE) == 4 * UNITS_PER_WORD			\	  && (((REGNO) & 3) == 3 && (REGNO) <= 23))))/* How to renumber registers for dbx and gdb.   Registers 0  - 31 remain unchanged.   Registers 32 - 87 are mapped to 72 - 127   Register 88 is mapped to 32.  */#define DBX_REGISTER_NUMBER(REGNO) \  ((REGNO) <= 31 ? (REGNO) :						\   ((REGNO) <= 87 ? (REGNO) + 40 : 32))/* We must not use the DBX register numbers for the DWARF 2 CFA column   numbers because that maps to numbers beyond FIRST_PSEUDO_REGISTER.   Instead use the identity mapping.  */#define DWARF_FRAME_REGNUM(REG) REG/* Define the classes of registers for register constraints in the   machine description.  Also define ranges of constants.   One of the classes must always be named ALL_REGS and include all hard regs.   If there is more than one class, another class must be named NO_REGS   and contain no registers.   The name GENERAL_REGS must be the name of a class (or an alias for   another name such as ALL_REGS).  This is the class of registers   that is allowed by "g" or "r" in a register constraint.   Also, registers outside this class are allocated only when   instructions express preferences for them.   The classes must be numbered in nondecreasing order; that is,   a larger-numbered class must never be contained completely   in a smaller-numbered class.   For any two classes, it is very desirable that there be another   class that represents their union.  */  /* The HP-PA has four kinds of registers: general regs, 1.0 fp regs,     1.1 fp regs, and the high 1.1 fp regs, to which the operands of     fmpyadd and fmpysub are restricted.  */enum reg_class { NO_REGS, R1_REGS, GENERAL_REGS, FPUPPER_REGS, FP_REGS,		 GENERAL_OR_FP_REGS, SHIFT_REGS, ALL_REGS, LIM_REG_CLASSES};#define N_REG_CLASSES (int) LIM_REG_CLASSES/* Give names of register classes as strings for dump file.   */#define REG_CLASS_NAMES \  {"NO_REGS", "R1_REGS", "GENERAL_REGS", "FPUPPER_REGS", "FP_REGS", \   "GENERAL_OR_FP_REGS", "SHIFT_REGS", "ALL_REGS"}/* Define which registers fit in which classes.   This is an initializer for a vector of HARD_REG_SET   of length N_REG_CLASSES. Register 0, the "condition code" register,   is in no class.  */#define REG_CLASS_CONTENTS	\ {{0x00000000, 0x00000000, 0x00000000},	/* NO_REGS */			\  {0x00000002, 0x00000000, 0x00000000},	/* R1_REGS */			\  {0xfffffffe, 0x00000000, 0x00000000},	/* GENERAL_REGS */		\  {0x00000000, 0xff000000, 0x00ffffff},	/* FPUPPER_REGS */		\  {0x00000000, 0xffffffff, 0x00ffffff},	/* FP_REGS */			\  {0xfffffffe, 0xffffffff, 0x00ffffff},	/* GENERAL_OR_FP_REGS */	\  {0x00000000, 0x00000000, 0x01000000},	/* SHIFT_REGS */		\  {0xfffffffe, 0xffffffff, 0x01ffffff}}	/* ALL_REGS *//* Return the class number of the smallest class containing   reg number REGNO.  This could be a conditional expression   or could index an array.  */#define REGNO_REG_CLASS(REGNO)						\  ((REGNO) == 0 ? NO_REGS 						\   : (REGNO) == 1 ? R1_REGS						\   : (REGNO) < 32 ? GENERAL_REGS					\   : (REGNO) < 56 ? FP_REGS						\   : (REGNO) < 88 ? FPUPPER_REGS					\   : SHIFT_REGS)/* Get reg_class from a letter such as appears in the machine description.  *//* Keep 'x' for backward compatibility with user asm.   */#define REG_CLASS_FROM_LETTER(C) \  ((C) == 'f' ? FP_REGS :					\   (C) == 'y' ? FPUPPER_REGS :					\   (C) == 'x' ? FP_REGS :					\   (C) == 'q' ? SHIFT_REGS :					\   (C) == 'a' ? R1_REGS :					\   (C) == 'Z' ? ALL_REGS : NO_REGS)/* Return the maximum number of consecutive registers   needed to represent mode MODE in a register of class CLASS.  */#define CLASS_MAX_NREGS(CLASS, MODE)					\  ((CLASS) == FP_REGS || (CLASS) == FPUPPER_REGS			\   ? (!TARGET_PA_11 ? 1 : (GET_MODE_SIZE (MODE) + 4 - 1) / 4)		\   : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))/* 1 if N is a possible register number for function argument passing.  */#define FUNCTION_ARG_REGNO_P(N) \  (((N) >= 23 && (N) <= 26) || (! TARGET_SOFT_FLOAT && (N) >= 32 && (N) <= 39)) /* How to refer to registers in assembler output.   This sequence is indexed by compiler's hard-register-number (see above).  */#define REGISTER_NAMES \{"%r0",   "%r1",    "%r2",   "%r3",    "%r4",   "%r5",    "%r6",   "%r7",    \ "%r8",   "%r9",    "%r10",  "%r11",   "%r12",  "%r13",   "%r14",  "%r15",   \ "%r16",  "%r17",   "%r18",  "%r19",   "%r20",  "%r21",   "%r22",  "%r23",   \ "%r24",  "%r25",   "%r26",  "%r27",   "%r28",  "%r29",   "%r30",  "%r31",   \ "%fr4",  "%fr4R",  "%fr5",  "%fr5R",  "%fr6",  "%fr6R",  "%fr7",  "%fr7R",  \ "%fr8",  "%fr8R",  "%fr9",  "%fr9R",  "%fr10", "%fr10R", "%fr11", "%fr11R", \ "%fr12", "%fr12R", "%fr13", "%fr13R", "%fr14", "%fr14R", "%fr15", "%fr15R", \ "%fr16", "%fr16R", "%fr17", "%fr17R", "%fr18", "%fr18R", "%fr19", "%fr19R", \ "%fr20", "%fr20R", "%fr21", "%fr21R", "%fr22", "%fr22R", "%fr23", "%fr23R", \ "%fr24", "%fr24R", "%fr25", "%fr25R", "%fr26", "%fr26R", "%fr27", "%fr27R", \ "%fr28", "%fr28R", "%fr29", "%fr29R", "%fr30", "%fr30R", "%fr31", "%fr31R", \ "SAR"}#define ADDITIONAL_REGISTER_NAMES \{{"%fr4L",32}, {"%fr5L",34}, {"%fr6L",36}, {"%fr7L",38},		\ {"%fr8L",40}, {"%fr9L",42}, {"%fr10L",44}, {"%fr11L",46},		\ {"%fr12L",48}, {"%fr13L",50}, {"%fr14L",52}, {"%fr15L",54},		\ {"%fr16L",56}, {"%fr17L",58}, {"%fr18L",60}, {"%fr19L",62},		\ {"%fr20L",64}, {"%fr21L",66}, {"%fr22L",68}, {"%fr23L",70},		\ {"%fr24L",72}, {"%fr25L",74}, {"%fr26L",76}, {"%fr27L",78},		\ {"%fr28L",80}, {"%fr29L",82}, {"%fr30L",84}, {"%fr31R",86},		\ {"%cr11",88}}#define FP_SAVED_REG_LAST 66#define FP_SAVED_REG_FIRST 48#define FP_REG_STEP 2#define FP_REG_FIRST 32#define FP_REG_LAST 87

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -