⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lib1funcs.asm

📁 linux下的gcc编译器
💻 ASM
字号:
/* Assembly functions for the Xtensa version of libgcc1.   Copyright (C) 2001,2002 Free Software Foundation, Inc.   Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.This file is part of GCC.GCC is free software; you can redistribute it and/or modify it underthe terms of the GNU General Public License as published by the FreeSoftware Foundation; either version 2, or (at your option) any laterversion.In addition to the permissions in the GNU General Public License, theFree Software Foundation gives you unlimited permission to link thecompiled version of this file into combinations with other programs,and to distribute those combinations without any restriction comingfrom the use of this file.  (The General Public License restrictionsdo apply in other respects; for example, they cover modification ofthe file, and distribution when not linked into a combineexecutable.)GCC is distributed in the hope that it will be useful, but WITHOUT ANYWARRANTY; without even the implied warranty of MERCHANTABILITY orFITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public Licensefor more details.You should have received a copy of the GNU General Public Licensealong with GCC; see the file COPYING.  If not, write to the FreeSoftware Foundation, 59 Temple Place - Suite 330, Boston, MA02111-1307, USA.  */#include "xtensa/xtensa-config.h"#ifdef L_mulsi3	.align	4	.global	__mulsi3	.type	__mulsi3,@function__mulsi3:	entry	sp, 16#if XCHAL_HAVE_MUL16	or	a4, a2, a3	srai	a4, a4, 16	bnez	a4, .LMUL16	mul16u	a2, a2, a3	retw.LMUL16:	srai	a4, a2, 16	srai	a5, a3, 16	mul16u	a7, a4, a3	mul16u	a6, a5, a2	mul16u	a4, a2, a3	add	a7, a7, a6	slli	a7, a7, 16	add	a2, a7, a4#elif XCHAL_HAVE_MAC16	mul.aa.hl a2, a3	mula.aa.lh a2, a3	rsr	a5, 16 # ACCLO	umul.aa.ll a2, a3	rsr	a4, 16 # ACCLO	slli	a5, a5, 16	add	a2, a4, a5#else /* !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MAC16 */        # Multiply one bit at a time, but unroll the loop 4x to better        # exploit the addx instructions.                # Peel the first iteration to save a cycle on init        # avoid negative numbers 	xor	a5, a2, a3  # top bit is 1 iff one of the inputs is negative	abs     a3, a3	abs     a2, a2        # swap so that second argument is smaller        sub     a7, a2, a3        mov     a4, a3        movgez  a4, a2, a7  # a4 = max(a2, a3)         movltz  a3, a2, a7  # a3 = min(a2, a3)        movi    a2, 0        extui   a6, a3, 0, 1        movnez  a2, a4, a6        addx2   a7, a4, a2        extui   a6, a3, 1, 1        movnez  a2, a7, a6        addx4   a7, a4, a2        extui   a6, a3, 2, 1        movnez  a2, a7, a6        addx8   a7, a4, a2        extui   a6, a3, 3, 1        movnez  a2, a7, a6        bgeui   a3, 16, .Lmult_main_loop        neg     a3, a2        movltz  a2, a3, a5        retw        .align  4.Lmult_main_loop:        srli    a3, a3, 4        slli    a4, a4, 4        add     a7, a4, a2        extui   a6, a3, 0, 1        movnez  a2, a7, a6        addx2   a7, a4, a2        extui   a6, a3, 1, 1        movnez  a2, a7, a6        addx4   a7, a4, a2        extui   a6, a3, 2, 1        movnez  a2, a7, a6        addx8   a7, a4, a2        extui   a6, a3, 3, 1        movnez  a2, a7, a6        bgeui   a3, 16, .Lmult_main_loop        neg     a3, a2        movltz  a2, a3, a5#endif /* !XCHAL_HAVE_MUL16 && !XCHAL_HAVE_MAC16 */	retw.Lfe0:	.size	__mulsi3,.Lfe0-__mulsi3#endif /* L_mulsi3 */	# Some Xtensa configurations include the NSAU (unsigned	# normalize shift amount) instruction which computes the number	# of leading zero bits.  For other configurations, the "nsau"	# operation is implemented as a macro.	#if !XCHAL_HAVE_NSA	.macro	nsau cnt, val, tmp, a	mov	\a, \val	movi	\cnt, 0	extui	\tmp, \a, 16, 16	bnez	\tmp, 0f	movi	\cnt, 16	slli	\a, \a, 160:		extui	\tmp, \a, 24, 8	bnez	\tmp, 1f	addi	\cnt, \cnt, 8	slli	\a, \a, 81:		movi	\tmp, __nsau_data	extui	\a, \a, 24, 8	add	\tmp, \tmp, \a	l8ui	\tmp, \tmp, 0	add	\cnt, \cnt, \tmp	.endm#endif /* !XCHAL_HAVE_NSA */#ifdef L_nsau	.section .rodata	.align	4	.global	__nsau_data	.type	__nsau_data,@object__nsau_data:	#if !XCHAL_HAVE_NSA	.byte	8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4	.byte	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3	.byte	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	.byte	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2	.byte	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	.byte	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	.byte	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	.byte	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	.byte	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	.byte	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	.byte	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	.byte	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	.byte	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	.byte	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	.byte	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	.byte	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0#endif /* !XCHAL_HAVE_NSA */.Lfe1:	.size	__nsau_data,.Lfe1-__nsau_data	.hidden	__nsau_data#endif /* L_nsau */#ifdef L_udivsi3	.align	4	.global	__udivsi3	.type	__udivsi3,@function__udivsi3:	entry	sp, 16	bltui	a3, 2, .Lle_one	# check if the divisor <= 1	mov	a6, a2		# keep dividend in a6#if XCHAL_HAVE_NSA	nsau	a5, a6		# dividend_shift = nsau(dividend)	nsau	a4, a3		# divisor_shift = nsau(divisor)#else /* !XCHAL_HAVE_NSA */	nsau	a5, a6, a2, a7	# dividend_shift = nsau(dividend)	nsau	a4, a3, a2, a7	# divisor_shift = nsau(divisor)#endif /* !XCHAL_HAVE_NSA */	bgeu	a5, a4, .Lspecial	sub	a4, a4, a5	# count = divisor_shift - dividend_shift	ssl	a4	sll	a3, a3		# divisor <<= count	movi	a2, 0		# quotient = 0	# test-subtract-and-shift loop; one quotient bit on each iteration#if XCHAL_HAVE_LOOPS	loopnez	a4, .Lloopend#endif /* XCHAL_HAVE_LOOPS */.Lloop:	bltu	a6, a3, .Lzerobit	sub	a6, a6, a3	addi	a2, a2, 1.Lzerobit:	slli	a2, a2, 1	srli	a3, a3, 1#if !XCHAL_HAVE_LOOPS	addi	a4, a4, -1	bnez	a4, .Lloop#endif /* !XCHAL_HAVE_LOOPS */.Lloopend:	bltu	a6, a3, .Lreturn	addi	a2, a2, 1	# increment quotient if dividend >= divisor.Lreturn:	retw.Lspecial:	# return dividend >= divisor	movi	a2, 0	bltu	a6, a3, .Lreturn2	movi	a2, 1.Lreturn2:	retw.Lle_one:	beqz	a3, .Lerror	# if divisor == 1, return the dividend	retw.Lerror:	movi	a2, 0		# just return 0; could throw an exception	retw.Lfe2:	.size	__udivsi3,.Lfe2-__udivsi3#endif /* L_udivsi3 */#ifdef L_divsi3	.align	4	.global	__divsi3	.type	__divsi3,@function__divsi3:	entry	sp, 16	xor	a7, a2, a3	# sign = dividend ^ divisor	abs	a6, a2		# udividend = abs(dividend)	abs	a3, a3		# udivisor = abs(divisor)	bltui	a3, 2, .Lle_one	# check if udivisor <= 1#if XCHAL_HAVE_NSA	nsau	a5, a6		# udividend_shift = nsau(udividend)	nsau	a4, a3		# udivisor_shift = nsau(udivisor)#else /* !XCHAL_HAVE_NSA */	nsau	a5, a6, a2, a8	# udividend_shift = nsau(udividend)	nsau	a4, a3, a2, a8	# udivisor_shift = nsau(udivisor)#endif /* !XCHAL_HAVE_NSA */	bgeu	a5, a4, .Lspecial	sub	a4, a4, a5	# count = udivisor_shift - udividend_shift	ssl	a4	sll	a3, a3		# udivisor <<= count	movi	a2, 0		# quotient = 0	# test-subtract-and-shift loop; one quotient bit on each iteration#if XCHAL_HAVE_LOOPS	loopnez	a4, .Lloopend#endif /* XCHAL_HAVE_LOOPS */.Lloop:	bltu	a6, a3, .Lzerobit	sub	a6, a6, a3	addi	a2, a2, 1.Lzerobit:	slli	a2, a2, 1	srli	a3, a3, 1#if !XCHAL_HAVE_LOOPS	addi	a4, a4, -1	bnez	a4, .Lloop#endif /* !XCHAL_HAVE_LOOPS */.Lloopend:	bltu	a6, a3, .Lreturn	addi	a2, a2, 1	# increment quotient if udividend >= udivisor.Lreturn:	neg	a5, a2	movltz	a2, a5, a7	# return (sign < 0) ? -quotient : quotient	retw.Lspecial:	movi	a2, 0	bltu	a6, a3, .Lreturn2 #  if dividend < divisor, return 0	movi	a2, 1	movi	a4, -1	movltz	a2, a4, a7	# else return (sign < 0) ? -1 :	 1 .Lreturn2:	retw.Lle_one:	beqz	a3, .Lerror	neg	a2, a6		# if udivisor == 1, then return...	movgez	a2, a6, a7	# (sign < 0) ? -udividend : udividend	retw.Lerror:	movi	a2, 0		# just return 0; could throw an exception	retw.Lfe3:	.size	__divsi3,.Lfe3-__divsi3#endif /* L_divsi3 */#ifdef L_umodsi3	.align	4	.global	__umodsi3	.type	__umodsi3,@function__umodsi3:	entry	sp, 16	bltui	a3, 2, .Lle_one	# check if the divisor is <= 1#if XCHAL_HAVE_NSA	nsau	a5, a2		# dividend_shift = nsau(dividend)	nsau	a4, a3		# divisor_shift = nsau(divisor)#else /* !XCHAL_HAVE_NSA */	nsau	a5, a2, a6, a7	# dividend_shift = nsau(dividend)	nsau	a4, a3, a6, a7	# divisor_shift = nsau(divisor)#endif /* !XCHAL_HAVE_NSA */	bgeu	a5, a4, .Lspecial	sub	a4, a4, a5	# count = divisor_shift - dividend_shift	ssl	a4	sll	a3, a3		# divisor <<= count	# test-subtract-and-shift loop#if XCHAL_HAVE_LOOPS	loopnez	a4, .Lloopend#endif /* XCHAL_HAVE_LOOPS */.Lloop:	bltu	a2, a3, .Lzerobit	sub	a2, a2, a3.Lzerobit:	srli	a3, a3, 1#if !XCHAL_HAVE_LOOPS	addi	a4, a4, -1	bnez	a4, .Lloop#endif /* !XCHAL_HAVE_LOOPS */.Lloopend:	bltu	a2, a3, .Lreturn	sub	a2, a2, a3	# subtract once more if dividend >= divisor.Lreturn:	retw.Lspecial:	bltu	a2, a3, .Lreturn2	sub	a2, a2, a3	# subtract once if dividend >= divisor.Lreturn2:	retw.Lle_one:	# the divisor is either 0 or 1, so just return 0.	# someday we may want to throw an exception if the divisor is 0.	movi	a2, 0	retw.Lfe4:	.size	__umodsi3,.Lfe4-__umodsi3#endif /* L_umodsi3 */#ifdef L_modsi3	.align	4	.global	__modsi3	.type	__modsi3,@function__modsi3:	entry	sp, 16	mov	a7, a2		# save original (signed) dividend	abs	a2, a2		# udividend = abs(dividend)	abs	a3, a3		# udivisor = abs(divisor)	bltui	a3, 2, .Lle_one	# check if udivisor <= 1#if XCHAL_HAVE_NSA	nsau	a5, a2		# udividend_shift = nsau(udividend)	nsau	a4, a3		# udivisor_shift = nsau(udivisor)#else /* !XCHAL_HAVE_NSA */	nsau	a5, a2, a6, a8	# udividend_shift = nsau(udividend)	nsau	a4, a3, a6, a8	# udivisor_shift = nsau(udivisor)#endif /* !XCHAL_HAVE_NSA */	bgeu	a5, a4, .Lspecial	sub	a4, a4, a5	# count = udivisor_shift - udividend_shift	ssl	a4	sll	a3, a3		# udivisor <<= count	# test-subtract-and-shift loop#if XCHAL_HAVE_LOOPS	loopnez	a4, .Lloopend#endif /* XCHAL_HAVE_LOOPS */.Lloop:	bltu	a2, a3, .Lzerobit	sub	a2, a2, a3.Lzerobit:	srli	a3, a3, 1#if !XCHAL_HAVE_LOOPS	addi	a4, a4, -1	bnez	a4, .Lloop#endif /* !XCHAL_HAVE_LOOPS */.Lloopend:	bltu	a2, a3, .Lreturn	sub	a2, a2, a3	# subtract once more if udividend >= udivisor.Lreturn:	bgez	a7, .Lpositive	neg	a2, a2		# if (dividend < 0), return -udividend.Lpositive:		retw.Lspecial:	bltu	a2, a3, .Lreturn2	sub	a2, a2, a3	# subtract once if dividend >= divisor.Lreturn2:	bgez	a7, .Lpositive2	neg	a2, a2		# if (dividend < 0), return -udividend.Lpositive2:		retw.Lle_one:	# udivisor is either 0 or 1, so just return 0.	# someday we may want to throw an exception if udivisor is 0.	movi	a2, 0	retw.Lfe5:	.size	__modsi3,.Lfe5-__modsi3#endif /* L_modsi3 */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -