📄 prt_gibbs.m
字号:
function prt_gibbs(results,vnames,fid)
% PURPOSE: Prints output from Gibbs sampler regression models
%---------------------------------------------------
% USAGE: prt_gibbs(results,vnames,fid)
% Where: results = a structure returned by a Gibbs regression
% vnames = an optional vector of variable names
% fid = file-id for printing results to a file
% (defaults to the MATLAB command window)
%---------------------------------------------------
% NOTES: e.g. vnames = strvcat('y','cterm','x1','x2');
% e.g. fid = fopen('ols.out','wr');
% use prt_gibbs(results,[],fid) to print to a file with no vnames
% --------------------------------------------------
% RETURNS: nothing, just prints the regression results
% --------------------------------------------------
% SEE ALSO: plt, prt, plt_gibbs
%---------------------------------------------------
% written by:
% James P. LeSage, Dept of Economics
% University of Toledo
% 2801 W. Bancroft St,
% Toledo, OH 43606
% jpl@jpl.econ.utoledo.edu
if ~isstruct(results)
error('prt_gibbs requires structure argument');
elseif nargin == 1
nflag = 0; fid = 1;
elseif nargin == 2
fid = 1; nflag = 1;
elseif nargin == 3
nflag = 0;
[vsize junk] = size(vnames); % user may supply a blank argument
if vsize > 0
nflag = 1;
end;
else
error('Wrong # of arguments to prt_gibbs');
end;
nobs = results.nobs;
nvar = results.nvar;
if nflag == 1 % user-supplied vnames
[tst_n nsize] = size(vnames);
if strcmp(results.meth,'ar_g') == 0
for i=1:nvar
Vname{i} = vnames(i+1,:);
end;
else % we handle things differently for ar_g model
Vname{1} = vnames(1,:);
end;
end; % end of if nflag == 1
switch results.meth
case {'ols_g','ols_gf'} % <=================== heteroscedastic linear model
% we handle these differently depending on the model
if ( nflag == 0) % no variable names supplied, make some up
Vname = [];
for i=1:nvar
Vname{i} = str2mat(['variable ',num2str(i)]);
end;
end;
% check result.pflag for tstat argument
y = results.y;
bhat = mean(results.bdraw); % calculate means and std deviations
bhat = bhat';
bstd = std(results.bdraw);
bstd = bstd';
if strcmp(results.pflag,'tstat')
tstat = bhat./bstd;
% find t-stat marginal probabilities
tout = tdis_prb(tstat,results.nobs);
else % find plevels
for i=1:results.nvar;
if bhat(i,1) > 0
cnt = find(results.bdraw(:,i) > 0);
tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
else
cnt = find(results.bdraw(:,i) < 0);
tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
end; % end of if - else
end; % end of for loop
end;
smean = mean(results.sdraw);
nobs = results.nobs;
nvar = results.nvar;
yhat = results.yhat;
resid = y - yhat;
sigu = resid'*resid;
ym = y - ones(nobs,1)*mean(y);
rsqr1 = sigu;
rsqr2 = ym'*ym;
rsqr = 1.0 - rsqr1/rsqr2; % r-squared
rsqr1 = rsqr1/(nobs-nvar);
rsqr2 = rsqr2/(nobs-1.0);
rbar = 1 - (rsqr1/rsqr2); % rbar-squared
fprintf(fid,'\n');
fprintf(fid,'Bayesian Heteroscedastic Linear Model Gibbs Estimates \n');
if nflag == 1
fprintf(fid,'Dependent Variable = %16s \n',vnames(1,:));
end;
fprintf(fid,'R-squared = %9.4f \n',rsqr);
fprintf(fid,'Rbar-squared = %9.4f \n',rbar);
fprintf(fid,'sigma^2 = %9.4f \n',smean);
fprintf(fid,'Nobs, Nvars = %6d,%6d \n',results.nobs,results.nvar);
fprintf(fid,'ndraws,nomit = %6d,%6d \n',results.ndraw,results.nomit);
fprintf(fid,'time in secs = %9.4f \n',results.time);
rmean = mean(results.rdraw);
if rmean ~= 0
fprintf(fid,'rmean = %9.4f \n',rmean);
else
fprintf(fid,'r-value = %6d \n',results.r);
end;
fprintf(fid,'***************************************************************\n');
vstring = 'Variable';
bstring = 'Prior Mean';
tstring = 'Std Deviation';
tmp = [results.pmean results.pstd];
cnames = strvcat(bstring,tstring);
rnames = vstring;
for i=1:nvar
rnames = strvcat(rnames,Vname{i});
end;
pin.fmt = '%16.6f';
pin.fid = fid;
pin.cnames = cnames;
pin.rnames = rnames;
mprint(tmp,pin);
% now print coefficient estimates, t-statistics and probabilities
% column labels for printing results
vstring = 'Variable';
bstring = 'Coefficient';
if strcmp(results.pflag,'tstat') % depends on pflag argument
tstring = 't-statistic';
pstring = 't-probability';
tmp = [bhat tstat tout];
else
tstring = 'Std Deviation';
pstring = 'p-level';
tmp = [bhat bstd tout];
end;
cnames = strvcat(bstring,tstring,pstring);
rnames = vstring;
for i=1:nvar
rnames = strvcat(rnames,Vname{i});
end;
in.fmt = '%16.6f';
in.fid = fid;
in.cnames = cnames;
in.rnames = rnames;
fprintf(fid,'***************************************************************\n');
fprintf(fid,' Posterior Estimates \n');
mprint(tmp,in);
case {'ar_g'} % <=================== autoregressive model
y = results.y;
bhat = mean(results.bdraw); % calculate means and std deviations
bhat = bhat';
ar = length(bhat)-1;
bstd = std(results.bdraw);
bstd = bstd';
if strcmp(results.pflag,'tstat')
tstat = bhat./bstd;
% find t-stat marginal probabilities
tout = tdis_prb(tstat,results.nobs);
else % find plevels
for i=1:results.nvar;
if bhat(i,1) > 0
cnt = find(results.bdraw(:,i) > 0);
tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
else
cnt = find(results.bdraw(:,i) < 0);
tout(i,1) = 1 - (length(cnt)/(results.ndraw-results.nomit));
end; % end of if - else
end; % end of for loop
end;
smean = mean(results.sdraw);
nobs = results.nobs;
nvar = results.nvar;
yhat = results.yhat;
resid = trimr(y,ar,0) - yhat;
sigu = resid'*resid;
ym = trimr(y,ar,0) - ones(nobs-ar,1)*mean(trimr(y,ar,0));
rsqr1 = sigu;
rsqr2 = ym'*ym;
rsqr = 1.0 - rsqr1/rsqr2; % r-squared
rsqr1 = rsqr1/(nobs-nvar);
rsqr2 = rsqr2/(nobs-1.0);
rbar = 1 - (rsqr1/rsqr2); % rbar-squared
fprintf(fid,'\n');
fprintf(fid,'Bayesian Autoregressive Model Gibbs Estimates \n');
if nflag == 1
fprintf(fid,'Dependent Variable = %16s \n',Vname{1});
end;
fprintf(fid,'R-squared = %9.4f \n',rsqr);
fprintf(fid,'Rbar-squared = %9.4f \n',rbar);
fprintf(fid,'sigma^2 = %9.4f \n',smean);
fprintf(fid,'nu,d0 = %6d,%6d \n',results.nu,results.d0);
fprintf(fid,'Nobs, Nvars = %6d,%6d \n',results.nobs,results.nvar);
fprintf(fid,'ndraws,nomit = %6d,%6d \n',results.ndraw,results.nomit);
fprintf(fid,'accept rate = %9.4f\n',results.accept);
fprintf(fid,'time in secs = %9.4f\n',results.time);
if results.r ~= 0
fprintf(fid,'rvalue = %9.4f \n',results.r);
end;
if nflag == 0
Vname = [];
% create special variable names for AR(m) model
Vname{1} = str2mat(['Cons']);
for i=2:nvar
Vname{i} = str2mat(['AR ',num2str(i-1)]);
end;
else
Vname{1} = 'constant ';
lnames{1} = ' ';
for m=1:ar;
Vname{m+1} = [vnames(1,:) str2mat([' lag ',num2str(m)])];
end;
end;
fprintf(fid,'***************************************************************\n');
vstring = 'Variable';
lstring = ' ';
bstring = 'Prior Mean';
tstring = 'Std Deviation';
tmp = [results.pmean results.pstd];
cnames = strvcat(bstring,tstring);
rnames = vstring;
for i=1:nvar
rnames = strvcat(rnames,Vname{i});
end;
in.fmt = '%16.6f';
in.rnames = rnames;
in.cnames = cnames;
in.fid = fid;
mprint(tmp,in);
fprintf(fid,'***************************************************************\n');
fprintf(fid,' Posterior Estimates \n');
% now print coefficient estimates, t-statistics and probabilities
% column labels for printing results
vstring = 'Variable';
bstring = 'Coefficient';
if strcmp(results.pflag,'tstat') % depends on pflag argument
tstring = 't-statistic';
pstring = 't-probability';
tmp = [bhat tstat tout];
else
tstring = 'Std Deviation';
pstring = 'p-level';
tmp = [bhat bstd tout];
end;
cnames = strvcat(bstring,tstring,pstring);
rnames = vstring;
for i=1:nvar
rnames = strvcat(rnames,Vname{i});
end;
in.fmt = '%16.6f';
in.fid = fid;
in.cnames = cnames;
in.rnames = rnames;
mprint(tmp,in);
case {'bma_g'} % <=================== Bayesian model averaging
% we handle these differently depending on the model
if ( nflag == 0) % no variable names supplied, make some up
Vname = [];
for i=1:results.nvar
Vname{i} = str2mat(['v',num2str(i)]);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -