📄 thsls_d.m
字号:
% PURPOSE: An example using thsls(),
% prt_eqs(), plt_eqs()
% Three-stage least-squares estimation
%---------------------------------------------------
% USAGE: thsls_d
%---------------------------------------------------
clear all;
nobs = 100;
neqs = 3;
x1 = randn(nobs,1);
x2 = randn(nobs,1);
x3 = randn(nobs,1);
b1 = 1.0;
b2 = 1.0;
b3 = 1.0;
iota = ones(nobs,1);
y1 = zeros(nobs,1);
y2 = zeros(nobs,1);
y3 = zeros(nobs,1);
evec = randn(nobs,3);
evec(:,2) = evec(:,3) + randn(nobs,1); % create cross-eqs corr
% create simultaneously determined variables y1,y2
for i=1:nobs;
y1(i,1) = iota(i,1)*10.0 + x1(i,1)*b1 + evec(i,1);
y2(i,1) = iota(i,1)*10.0 + y1(i,1)*1.0 + x2(i,1)*b2 + evec(i,2);
y3(i,1) = iota(i,1)*10.0 + y2(i,1)*1.0 + x2(i,1)*b2 + x3(i,1)*b3 + evec(i,3);
end;
vname1 = ['y1-LHS ',
'constant',
'x1 var '];
vname2 = ['y2-LHS ',
'y1 var ',
'constant',
'x2 var '];
vname3 = ['y3-LHS ',
'y2 var ',
'constant',
'x2 var ',
'x3 var '];
% set up a structure for y containing y's for each eqn
y(1).eq = y1;
y(2).eq = y2;
y(3).eq = y3;
% set up a structure for Y (RHS endogenous) for each eqn
Y(1).eq = [];
Y(2).eq = [y1];
Y(3).eq = [y2];
% set up a structure fo X (exogenous) in each eqn
X(1).eq = [iota x1];
X(2).eq = [iota x2];
X(3).eq = [iota x2 x3];
% do thsls regression
tic;
result = thsls(neqs,y,Y,X);
toc;
vname = [vname1
vname2
vname3];
prt_eqs(result,vname);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -