⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 main.c

📁 U-boot latest tarball
💻 C
字号:
/* * Copyright 2008 Freescale Semiconductor, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * Version 2 as published by the Free Software Foundation. *//* * Generic driver for Freescale DDR/DDR2/DDR3 memory controller. * Based on code from spd_sdram.c * Author: James Yang [at freescale.com] */#include <common.h>#include <asm/fsl_ddr_sdram.h>#include "ddr.h"extern void fsl_ddr_set_lawbar(		const common_timing_params_t *memctl_common_params,		unsigned int memctl_interleaved,		unsigned int ctrl_num);/* processor specific function */extern void fsl_ddr_set_memctl_regs(const fsl_ddr_cfg_regs_t *regs,				   unsigned int ctrl_num);/* Board-specific functions defined in each board's ddr.c */extern void fsl_ddr_get_spd(generic_spd_eeprom_t *ctrl_dimms_spd,			   unsigned int ctrl_num);/* * ASSUMPTIONS: *    - Same number of CONFIG_DIMM_SLOTS_PER_CTLR on each controller *    - Same memory data bus width on all controllers * * NOTES: * * The memory controller and associated documentation use confusing * terminology when referring to the orgranization of DRAM. * * Here is a terminology translation table: * * memory controller/documention  |industry   |this code  |signals * -------------------------------|-----------|-----------|----------------- * physical bank/bank		  |rank       |rank	  |chip select (CS) * logical bank/sub-bank	  |bank       |bank	  |bank address (BA) * page/row			  |row	      |page	  |row address * ???				  |column     |column	  |column address * * The naming confusion is further exacerbated by the descriptions of the * memory controller interleaving feature, where accesses are interleaved * _BETWEEN_ two seperate memory controllers.  This is configured only in * CS0_CONFIG[INTLV_CTL] of each memory controller. * * memory controller documentation | number of chip selects *				   | per memory controller supported * --------------------------------|----------------------------------------- * cache line interleaving	   | 1 (CS0 only) * page interleaving		   | 1 (CS0 only) * bank interleaving		   | 1 (CS0 only) * superbank interleraving	   | depends on bank (chip select) *				   |   interleraving [rank interleaving] *				   |   mode used on every memory controller * * Even further confusing is the existence of the interleaving feature * _WITHIN_ each memory controller.  The feature is referred to in * documentation as chip select interleaving or bank interleaving, * although it is configured in the DDR_SDRAM_CFG field. * * Name of field		| documentation name	| this code * -----------------------------|-----------------------|------------------ * DDR_SDRAM_CFG[BA_INTLV_CTL]	| Bank (chip select)	| rank interleaving *				|  interleaving */#ifdef DEBUGconst char *step_string_tbl[] = {	"STEP_GET_SPD",	"STEP_COMPUTE_DIMM_PARMS",	"STEP_COMPUTE_COMMON_PARMS",	"STEP_GATHER_OPTS",	"STEP_ASSIGN_ADDRESSES",	"STEP_COMPUTE_REGS",	"STEP_PROGRAM_REGS",	"STEP_ALL"};const char * step_to_string(unsigned int step) {	unsigned int s = __ilog2(step);	if ((1 << s) != step)		return step_string_tbl[7];	return step_string_tbl[s];}#endifint step_assign_addresses(fsl_ddr_info_t *pinfo,			  unsigned int dbw_cap_adj[],			  unsigned int *memctl_interleaving,			  unsigned int *rank_interleaving){	int i, j;	/*	 * If a reduced data width is requested, but the SPD	 * specifies a physically wider device, adjust the	 * computed dimm capacities accordingly before	 * assigning addresses.	 */	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {		unsigned int found = 0;		switch (pinfo->memctl_opts[i].data_bus_width) {		case 2:			/* 16-bit */			printf("can't handle 16-bit mode yet\n");			break;		case 1:			/* 32-bit */			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {				unsigned int dw;				dw = pinfo->dimm_params[i][j].data_width;				if (pinfo->dimm_params[i][j].n_ranks				    && (dw == 72 || dw == 64)) {					/*					 * FIXME: can't really do it					 * like this because this just					 * further reduces the memory					 */					found = 1;					break;				}			}			if (found) {				dbw_cap_adj[i] = 1;			}			break;		case 0:			/* 64-bit */			break;		default:			printf("unexpected data bus width "				"specified controller %u\n", i);			return 1;		}	}	/*	 * Check if all controllers are configured for memory	 * controller interleaving.	 */	j = 0;	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {		if (pinfo->memctl_opts[i].memctl_interleaving) {			j++;		}	}	if (j == 2) {		*memctl_interleaving = 1;		printf("\nMemory controller interleaving enabled: ");		switch (pinfo->memctl_opts[0].memctl_interleaving_mode) {		case FSL_DDR_CACHE_LINE_INTERLEAVING:			printf("Cache-line interleaving!\n");			break;		case FSL_DDR_PAGE_INTERLEAVING:			printf("Page interleaving!\n");			break;		case FSL_DDR_BANK_INTERLEAVING:			printf("Bank interleaving!\n");			break;		case FSL_DDR_SUPERBANK_INTERLEAVING:			printf("Super bank interleaving\n");		default:			break;		}	}	/* Check that all controllers are rank interleaving. */	j = 0;	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {		if (pinfo->memctl_opts[i].ba_intlv_ctl) {			j++;		}	}	if (j == 2) {		*rank_interleaving = 1;		printf("Bank(chip-select) interleaving enabled: ");		switch (pinfo->memctl_opts[0].ba_intlv_ctl &						FSL_DDR_CS0_CS1_CS2_CS3) {		case FSL_DDR_CS0_CS1_CS2_CS3:			printf("CS0+CS1+CS2+CS3\n");			break;		case FSL_DDR_CS0_CS1:			printf("CS0+CS1\n");			break;		case FSL_DDR_CS2_CS3:			printf("CS2+CS3\n");			break;		case FSL_DDR_CS0_CS1_AND_CS2_CS3:			printf("CS0+CS1 and CS2+CS3\n");		default:			break;		}	}	if (*memctl_interleaving) {		phys_addr_t addr;		phys_size_t total_mem_per_ctlr = 0;		/*		 * If interleaving between memory controllers,		 * make each controller start at a base address		 * of 0.		 *		 * Also, if bank interleaving (chip select		 * interleaving) is enabled on each memory		 * controller, CS0 needs to be programmed to		 * cover the entire memory range on that memory		 * controller		 *		 * Bank interleaving also implies that each		 * addressed chip select is identical in size.		 */		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {			addr = 0;			pinfo->common_timing_params[i].base_address =						(phys_addr_t)addr;			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {				unsigned long long cap					= pinfo->dimm_params[i][j].capacity;				pinfo->dimm_params[i][j].base_address = addr;				addr += (phys_addr_t)(cap >> dbw_cap_adj[i]);				total_mem_per_ctlr += cap >> dbw_cap_adj[i];			}		}		pinfo->common_timing_params[0].total_mem = total_mem_per_ctlr;	} else {		/*		 * Simple linear assignment if memory		 * controllers are not interleaved.		 */		phys_size_t cur_memsize = 0;		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {			phys_size_t total_mem_per_ctlr = 0;			pinfo->common_timing_params[i].base_address =						(phys_addr_t)cur_memsize;			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {				/* Compute DIMM base addresses. */				unsigned long long cap =					pinfo->dimm_params[i][j].capacity;				pinfo->dimm_params[i][j].base_address =					(phys_addr_t)cur_memsize;				cur_memsize += cap >> dbw_cap_adj[i];				total_mem_per_ctlr += cap >> dbw_cap_adj[i];			}			pinfo->common_timing_params[i].total_mem =							total_mem_per_ctlr;		}	}	return 0;}phys_size_tfsl_ddr_compute(fsl_ddr_info_t *pinfo, unsigned int start_step){	unsigned int i, j;	unsigned int all_controllers_memctl_interleaving = 0;	unsigned int all_controllers_rank_interleaving = 0;	phys_size_t total_mem = 0;	fsl_ddr_cfg_regs_t *ddr_reg = pinfo->fsl_ddr_config_reg;	common_timing_params_t *timing_params = pinfo->common_timing_params;	/* data bus width capacity adjust shift amount */	unsigned int dbw_capacity_adjust[CONFIG_NUM_DDR_CONTROLLERS];	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {		dbw_capacity_adjust[i] = 0;	}	debug("starting at step %u (%s)\n",	      start_step, step_to_string(start_step));	switch (start_step) {	case STEP_GET_SPD:		/* STEP 1:  Gather all DIMM SPD data */		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {			fsl_ddr_get_spd(pinfo->spd_installed_dimms[i], i);		}	case STEP_COMPUTE_DIMM_PARMS:		/* STEP 2:  Compute DIMM parameters from SPD data */		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {			for (j = 0; j < CONFIG_DIMM_SLOTS_PER_CTLR; j++) {				unsigned int retval;				generic_spd_eeprom_t *spd =					&(pinfo->spd_installed_dimms[i][j]);				dimm_params_t *pdimm =					&(pinfo->dimm_params[i][j]);				retval = compute_dimm_parameters(spd, pdimm, i);				if (retval == 2) {					printf("Error: compute_dimm_parameters"					" non-zero returned FATAL value "					"for memctl=%u dimm=%u\n", i, j);					return 0;				}				if (retval) {					debug("Warning: compute_dimm_parameters"					" non-zero return value for memctl=%u "					"dimm=%u\n", i, j);				}			}		}	case STEP_COMPUTE_COMMON_PARMS:		/*		 * STEP 3: Compute a common set of timing parameters		 * suitable for all of the DIMMs on each memory controller		 */		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {			debug("Computing lowest common DIMM"				" parameters for memctl=%u\n", i);			compute_lowest_common_dimm_parameters(				pinfo->dimm_params[i],				&timing_params[i],				CONFIG_DIMM_SLOTS_PER_CTLR);		}	case STEP_GATHER_OPTS:		/* STEP 4:  Gather configuration requirements from user */		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {			debug("Reloading memory controller "				"configuration options for memctl=%u\n", i);			/*			 * This "reloads" the memory controller options			 * to defaults.  If the user "edits" an option,			 * next_step points to the step after this,			 * which is currently STEP_ASSIGN_ADDRESSES.			 */			populate_memctl_options(					timing_params[i].all_DIMMs_registered,					&pinfo->memctl_opts[i],					pinfo->dimm_params[i], i);		}	case STEP_ASSIGN_ADDRESSES:		/* STEP 5:  Assign addresses to chip selects */		step_assign_addresses(pinfo,				dbw_capacity_adjust,				&all_controllers_memctl_interleaving,				&all_controllers_rank_interleaving);	case STEP_COMPUTE_REGS:		/* STEP 6:  compute controller register values */		debug("FSL Memory ctrl cg register computation\n");		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {			if (timing_params[i].ndimms_present == 0) {				memset(&ddr_reg[i], 0,					sizeof(fsl_ddr_cfg_regs_t));				continue;			}			compute_fsl_memctl_config_regs(					&pinfo->memctl_opts[i],					&ddr_reg[i], &timing_params[i],					pinfo->dimm_params[i],					dbw_capacity_adjust[i]);		}	default:		break;	}	/* Compute the total amount of memory. */	/*	 * If bank interleaving but NOT memory controller interleaving	 * CS_BNDS describe the quantity of memory on each memory	 * controller, so the total is the sum across.	 */	if (!all_controllers_memctl_interleaving	    && all_controllers_rank_interleaving) {		total_mem = 0;		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {			total_mem += timing_params[i].total_mem;		}	} else {		/*		 * Compute the amount of memory available just by		 * looking for the highest valid CSn_BNDS value.		 * This allows us to also experiment with using		 * only CS0 when using dual-rank DIMMs.		 */		unsigned int max_end = 0;		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {			for (j = 0; j < CONFIG_CHIP_SELECTS_PER_CTRL; j++) {				fsl_ddr_cfg_regs_t *reg = &ddr_reg[i];				if (reg->cs[j].config & 0x80000000) {					unsigned int end;					end = reg->cs[j].bnds & 0xFFF;					if (end > max_end) {						max_end = end;					}				}			}		}#if !defined(CONFIG_PHYS_64BIT)		/* Check for 4G or more with a 32-bit phys_addr_t.  Bad. */		if (max_end >= 0xff) {			printf("This U-Boot only supports < 4G of DDR\n");			printf("You could rebuild it with CONFIG_PHYS_64BIT\n");			return CONFIG_MAX_MEM_MAPPED;		}#endif		total_mem = 1 + (((unsigned long long)max_end << 24ULL)				    | 0xFFFFFFULL);	}	return total_mem;}/* * fsl_ddr_sdram() -- this is the main function to be called by *	initdram() in the board file. * * It returns amount of memory configured in bytes. */phys_size_t fsl_ddr_sdram(void){	unsigned int i;	unsigned int memctl_interleaved;	phys_size_t total_memory;	fsl_ddr_info_t info;	/* Reset info structure. */	memset(&info, 0, sizeof(fsl_ddr_info_t));	/* Compute it once normally. */	total_memory = fsl_ddr_compute(&info, STEP_GET_SPD);	/* Check for memory controller interleaving. */	memctl_interleaved = 0;	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {		memctl_interleaved +=			info.memctl_opts[i].memctl_interleaving;	}	if (memctl_interleaved) {		if (memctl_interleaved == CONFIG_NUM_DDR_CONTROLLERS) {			debug("memctl interleaving\n");			/*			 * Change the meaning of memctl_interleaved			 * to be "boolean".			 */			memctl_interleaved = 1;		} else {			printf("Warning: memctl interleaving not "				"properly configured on all controllers\n");			memctl_interleaved = 0;			for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++)				info.memctl_opts[i].memctl_interleaving = 0;			debug("Recomputing with memctl_interleaving off.\n");			total_memory = fsl_ddr_compute(&info,						       STEP_ASSIGN_ADDRESSES);		}	}	/* Program configuration registers. */	for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {		debug("Programming controller %u\n", i);		if (info.common_timing_params[i].ndimms_present == 0) {			debug("No dimms present on controller %u; "					"skipping programming\n", i);			continue;		}		fsl_ddr_set_memctl_regs(&(info.fsl_ddr_config_reg[i]), i);	}	if (memctl_interleaved) {		const unsigned int ctrl_num = 0;		/* Only set LAWBAR1 if memory controller interleaving is on. */		fsl_ddr_set_lawbar(&info.common_timing_params[0],					 memctl_interleaved, ctrl_num);	} else {		/*		 * Memory controller interleaving is NOT on;		 * set each lawbar individually.		 */		for (i = 0; i < CONFIG_NUM_DDR_CONTROLLERS; i++) {			fsl_ddr_set_lawbar(&info.common_timing_params[i],						 0, i);		}	}	debug("total_memory = %llu\n", (u64)total_memory);	return total_memory;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -