⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 featuressmpca.m

📁 cuboid democuboid democuboid democuboid demo
💻 M
字号:
% Dimensionality reduction for cuboids descriptors.%% Samples cuboids from all datasets, and uses this sample to get the pca coefficient for% the descriptor (see imagedesc_getpca).  Should be run after features are detected (of% course), and before descriptor is applied to all the cuboids.  This step is optional,% but it is probably a good idea since otherwise descriptor can potentially have very% large dimension.%% INPUTS%   DATASETS    - array of structs, should have the fields:%           .cuboids    - length N cell vector of sets of cuboids%   cubdesc     - cuboid descriptor [see imagedesc_getpca]%   kpca        - number of dimensions to reduce data to [see imagedesc_getpca]%% OUTPUTS%   cubdec      - cuboid descriptor with pca info [see imagedesc_getpca]%   cuboids     - sampled cuboids %% See also FEATURESSM, PCA, IMAGEDESC_GETPCAfunction [cubdesc,cuboids] = featuresSMpca( DATASETS, cubdesc, kpca )    reqfs = {'cuboids'};    if( ~isfield2( DATASETS, reqfs, 1) )         ermsg=[]; for i=1:length(reqfs) ermsg=[ermsg reqfs{i} ', ']; end        error( ['Each DATASET must have: ' ermsg 'initialized'] ); end;    %%% sample cuboids from each dataset    nsets = length(DATASETS);    maxcub = round( 1200 / nsets );    cuboids = cell(1,nsets);    for i=1:nsets        cuboidsi = cell2mat( DATASETS(i).cuboids );        if( maxcub < size(cuboidsi,4) )            rperm = randperm(size(cuboidsi,4));            cuboidsi = cuboidsi(:,:,:,1:maxcub);        end;        cuboids{i} = cuboidsi;    end;    cuboids = cell2mat( permute(cuboids,[1 3 4 2]) );     %%% getpca    cubdesc = imagedesc_getpca( cuboids, cubdesc, kpca, 0 );        

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -