📄 featureslg.m
字号:
% Feature detection and description applied to .mat behavior data. %% See RECOGNITION_DEMO / FEATURESSM for general steps of detection / description and% differences between this function and FEATURESSM.% % INPUTS% nsets - number of sets% cliptypes - types of clips (cell of strings)% par_stfeatures - parameters for feature detection [see featuresLGdetect]% cubdesc - cuboid descriptor [see featuresLGdesc]% ncuboids - number of cuboids to grab per .mat file [see featuresLGpca]% kpca - number of dimensions to reduce data to [see featuresLGpca]%% OUTUPTS% DATASETS - array of structs, will have fields:% .IDX - length N vector of clip types% .ncilps - N: number of clips% .cubcount - length N vector of cuboids counts for each clip clip% .subs - length N cell vector of sets of locations of cuboids% .desc - length N cell vector of cuboid descriptors% cubdesc - output of featuresLGpca% cuboids - output of featuresLGpca% % See also FEATURESLGDETECT, FEATURESLGPCA, FEATURESLGDESC, FEATURESLGCONVfunction [DATASETS,cubdesc,cuboids] = featuresLG( nsets, cliptypes, ... par_stfeatures, ncuboids, cubdesc, kpca ) featuresLGdetect( nsets, cliptypes, par_stfeatures ); [cubdesc,cuboids] = featuresLGpca( nsets, ncuboids, cubdesc, kpca ); featuresLGdesc( nsets, cubdesc ); DATASETS = featuresLGconv( nsets, cliptypes );
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -