⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 recog_test_nfold.m

📁 cuboid democuboid democuboid democuboid demo
💻 M
字号:
% Test the performance of behavior recognition using cross validation.%% Training occurs on all but (n-1) of the sets and testing on the remaining one, giving a% total of (n) training/testing scenarios.  One simplification is used here: clustering is% done only once, using all of the data.  When reporting final results, clustering needs% to be done each time separately, as in recog_test.%% Parameters for clustering and classification can be specified inside this file.%% INPUTS%   DATASETS    - array of structs, should have the fields:%           .IDX        - length N vector of clip types%           .desc       - length N cell vector of cuboid descriptors%           .ncilps     - N: number of clips%   k           - number of clusters%   nreps       - number of repetitions%   % OUTPUTS%   ER      - error  - averaged over nreps%   CM      - confusion matrix - averaged over nreps%% See also RECOGNITION_DEMO, RECOG_TEST, NFOLDXVAL, RECOG_CLUSTER, RECOG_CLIPSDESCfunction [ER,CM] = recog_test_nfold( DATASETS, k, nreps )    % parameters    csigma=0; clfinit = @clf_knn; clfparams = {1,@dist_chisquared};    par_kmeans={'replicates',5,'minCsize',1,'display',0,'outlierfrac',0 };    nsets = length( DATASETS );    nclasses = max( DATASETS(1).IDX );    CMS = zeros(nclasses,nclasses,nreps);    ticstatusid = ticstatus('recog_test;',[],10 ); cnt=1;    for h=1:nreps        clusters = recog_cluster( DATASETS, k, par_kmeans );        data = recog_clipsdesc( DATASETS, clusters, csigma );        IDX = {DATASETS.IDX};        CMS(:,:,h) = nfoldxval( data, IDX, clfinit, clfparams );    end;    CM = mean(CMS,3);    ER = 1- sum(diag(CM))/sum(CM(:));

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -