📄 featureslgpca.m
字号:
% Dimensionality reduction for cuboids descriptors.%% Assumes feature extraction (FEATURESLGDETECT) has been run. % See FEATURESSMPCA for more info. %% INPUTS% nsets - number of sets% ncuboids - number of cuboids to grab per .mat file% cubdesc - cuboid descriptor [see imagedesc_getpca]% kpca - number of dimensions to reduce data to [see imagedesc_getpca]% % OUTPUTS% cubdec - cuboid descriptor with pca info [see imagedesc_getpca]% cuboids - sampled cuboids %% See also FEATURESLG, FEATURESSMPCA, FEATURESLGDETECTfunction [cubdesc,cuboids] = featuresLGpca( nsets, ncuboids, cubdesc, kpca ) %%% sample cuboids from each dataset cuboids=[]; for s=0:(nsets-1) srcdir = datadir(s); matcontents = {'clipname','cliptype','cuboids','subs'}; cuboids_all = feval_mats( @featuresLGpca1, matcontents, {ncuboids}, srcdir, 'cuboids' ); cuboids_all = permute( cuboids_all, [1 3 4 2] ); cuboids = cat(4,cuboids,cell2mat( cuboids_all )); end; % getpca cubdesc = imagedesc_getpca( cuboids, cubdesc, kpca, 0 ); function x = featuresLGpca1( vals, params ) [clipname,cliptype,cuboids, subs] = deal( vals{:} ); ncuboids = deal( params{:} ); n = size(cuboids,4); if( n>ncuboids ) cuboids = cuboids( :,:,:, randperm2(n,ncuboids) ); end; x = {cuboids};
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -