⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 stfeatures_harris.m

📁 cuboid democuboid democuboid democuboid demo
💻 M
字号:
% Laptev & Lindeberg spatiotemporal feature detector - interface through stfeatures.%% INPUTS%   I       - 3D double input image%   sigma   - spatial scale%   tau     - temporal scale%% OUTPUTS%   R       - detector strength response at each image location%% See also STFEATURESfunction H = stfeatures_harris( I, sigma, tau )    %%% smooth by 3d kernel and compute temporal and spatial derivatives    I = I*255; %otherwise I becomes ill conditioned    sigmas = [sigma sigma tau];    L = gauss_smooth( I, sigmas, 'valid' );    if( ndims(L)<3 ) error( 'Filters too large for image.' ); end;    dx = [-1 0 1]; dy = dx'; dt = cat(3, cat(3,-1,0), 1);    Lx = convn_fast(L, dx, 'same'); Lx = arraycrop2dims( Lx, size(Lx)-2 );    Ly = convn_fast(L, dy, 'same'); Ly = arraycrop2dims( Ly, size(Ly)-2 );    Lt = convn_fast(L, dt, 'same'); Lt = arraycrop2dims( Lt, size(Lt)-2 );        %%% compute elements of second moment matrix over integration window    %%% Would be faster if used localsum    sigmas_i = 2*sigmas; %integration sacle=2*spatial scale        Lx2 = gauss_smooth(Lx.^2,  sigmas_i, 'same');     Ly2 = gauss_smooth(Ly.^2,  sigmas_i, 'same');    Lt2 = gauss_smooth(Lt.^2,  sigmas_i, 'same');    Lxy = gauss_smooth(Lx.*Ly, sigmas_i, 'same');    Lxt = gauss_smooth(Lx.*Lt, sigmas_i, 'same');    Lyt = gauss_smooth(Ly.*Lt, sigmas_i, 'same');        %%% calculate determinant and trace    det_mu = Lx2.*Ly2.*Lt2 + 2.*Lxt.*Lyt.*Lxy - 2*( Lx2.*(Lyt.^2) +Ly2.*(Lxt.^2) + Lt2.*(Lxy.^2));    trace_mu = (Lx2 + Ly2 + Lt2 + eps);    k=.005;  H = det_mu - k * trace_mu.^2;    H = arraycrop2dims( H, size(I) );    H( H<0 ) = 0;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -