📄 vsldcorrelationmatrixcol.c
字号:
/*******************************************************************************! INTEL CONFIDENTIAL! Copyright(C) 2007-2008 Intel Corporation. All Rights Reserved.! The source code contained or described herein and all documents related to! the source code ("Material") are owned by Intel Corporation or its suppliers! or licensors. Title to the Material remains with Intel Corporation or its! suppliers and licensors. The Material contains trade secrets and proprietary! and confidential information of Intel or its suppliers and licensors. The! Material is protected by worldwide copyright and trade secret laws and! treaty provisions. No part of the Material may be used, copied, reproduced,! modified, published, uploaded, posted, transmitted, distributed or disclosed! in any way without Intel's prior express written permission.! No license under any patent, copyright, trade secret or other intellectual! property right is granted to or conferred upon you by disclosure or delivery! of the Materials, either expressly, by implication, inducement, estoppel or! otherwise. Any license under such intellectual property rights must be! express and approved by Intel in writing.!!*******************************************************************************! Content:! Calculation of correlation matrix Example Program Text!******************************************************************************/#include "mkl.h"#include "vsl_ss.h"#include "stdio.h"#include "math.h"#define N 1000 /* number of observations */#define DIM 3 /* dimension of the task */ #include <math.h>#include <stdio.h>#define RETURN_ON_ERROR \ if(errcode<0) \ { \ printf("Error: %i\n", errcode); \ printf("\nTEST FAILED\n"); \ return 0; \ }int generate_input(int var, int n, double *x, double *a, double *C);int main(){ int i, j, k1, k2, incx=1; int fail=0; int dim=DIM, n=N, dd=DIM*DIM, storage=VSL_SS_MATRIX_COLUMNS_STORAGE; VSLSSTaskPtr task=0; double x[N][DIM]; /* matrix of observations */ double cov_target[DIM][DIM]; double cov_f[DIM][DIM], cor_f[DIM][DIM]; double cov_u[DIM*(DIM+1)/2], cor_u[DIM*(DIM+1)/2]; double cov_l[DIM*(DIM+1)/2], cor_l[DIM*(DIM+1)/2]; double check[DIM][DIM], norm; double mean[DIM], mean_target[DIM]; MKL_INT cov_storage = VSL_SS_MATRIX_L_PACKED_STORAGE; // VSL_SS_MATRIX_FULL_STORAGE; MKL_INT cor_storage = VSL_SS_MATRIX_L_PACKED_STORAGE; // VSL_SS_MATRIX_FULL_STORAGE; MKL_INT errcode; generate_input(DIM, N, (double *)x, mean_target, (double*)cov_target); for(i=0;i<DIM;i++) { for(j=0;j<DIM;j++) { cov_f[i][j]=0; cor_f[i][j]=0; } } for(i=0;i<DIM*(DIM+1)/2;i++) { cov_u[i]=0.0; cor_u[i]=0.0; cov_l[i]=0.0; cor_l[i]=0.0; } errcode = vsldSSNewTask( &task, &dim, &n, &storage, (double*)x, 0, 0 ); cov_storage = VSL_SS_MATRIX_FULL_STORAGE; cor_storage = VSL_SS_MATRIX_FULL_STORAGE; errcode = vsldSSEditCovCor( task, mean, (double*)cov_f, &cov_storage , (double*)cor_f, &cor_storage ); RETURN_ON_ERROR; for(i=0;i<DIM;i++) mean[i] = 0.0; errcode = vsldSSCompute( task, VSL_SS_COVARIANCE_MATRIX|VSL_SS_CORRELATION_MATRIX, VSL_SS_FAST_METHOD ); RETURN_ON_ERROR; cov_storage = VSL_SS_MATRIX_U_PACKED_STORAGE; cor_storage = VSL_SS_MATRIX_U_PACKED_STORAGE; errcode = vsldSSEditCovCor( task, mean, (double*)cov_u, &cov_storage , (double*)cor_u, &cor_storage ); RETURN_ON_ERROR; for(i=0;i<DIM;i++) mean[i] = 0.0; errcode = vsldSSCompute( task, VSL_SS_COVARIANCE_MATRIX|VSL_SS_CORRELATION_MATRIX, VSL_SS_FAST_METHOD ); RETURN_ON_ERROR; cov_storage = VSL_SS_MATRIX_L_PACKED_STORAGE; cor_storage = VSL_SS_MATRIX_L_PACKED_STORAGE; errcode = vsldSSEditCovCor( task, mean, (double*)cov_l, &cov_storage , (double*)cor_l, &cor_storage ); RETURN_ON_ERROR; for(i=0;i<DIM;i++) mean[i] = 0.0; errcode = vsldSSCompute( task, VSL_SS_COVARIANCE_MATRIX|VSL_SS_CORRELATION_MATRIX, VSL_SS_FAST_METHOD ); RETURN_ON_ERROR; errcode = vslSSDeleteTask( &task ); RETURN_ON_ERROR; printf(" Dimension of the task: %d\n", DIM); printf("Number of observations: %d\n\n", N); printf(" Expected means\n"); for(i=0;i<DIM;i++) { printf("%+lf ", mean_target[i]); } printf("\n"); printf("\n"); printf(" Expected covariance matrix Expected correlation matrix\n"); for(i=0;i<DIM;i++) { for(j=0;j<DIM;j++) { printf("%+lf ", cov_target[i][j]); } printf(" "); for(j=0;j<DIM;j++) { printf("%+lf ", cov_target[i][j] / ((j!=i) ? sqrt(cov_target[i][i] * cov_target[j][j]) : 1.0)); } printf("\n"); } printf("\n"); printf(" Computed means\n"); for(i=0;i<DIM;i++) { printf("%+lf ", mean[i]); } printf("\n"); printf("\n"); printf(" Computed covariance matrix Computed correlation matrix\n"); for(i=0;i<DIM;i++) { for(j=0;j<DIM;j++) { printf("%+9lf ", cov_f[i][j]); check[i][j] = cov_f[i][j] - cov_target[i][j]; } printf(" "); for(j=0;j<DIM;j++) { printf("%+9lf ", cor_f[i][j]); } printf("\n"); } norm = dnrm2(&dd, (double*)check, &incx); if(norm > 1.0e-10) fail++; printf("\n"); printf(" Packed (upper) covariance Packed (upper) correlation\n"); k1=0; k2=0; for(i=0;i<DIM;i++) { for(j=0;j<i;j++) printf(" "); for(j=i;j<DIM;j++) { printf("%+9lf ", cov_u[k1]); check[i][j] = cov_u[k1] - cov_target[i][j]; check[j][i] = check[i][j]; k1++; } printf(" "); for(j=0;j<i;j++) printf(" "); for(j=i;j<DIM;j++) { printf("%+9lf ", cor_u[k2]); k2++; } printf("\n"); } norm = dnrm2(&dd, (double*)check, &incx); printf("\n"); printf(" Packed (lower) covariance Packed (lower) correlation\n"); k1=0; k2=0; for(i=0;i<DIM;i++) { for(j=0;j<=i;j++) { printf("%+9lf ", cov_l[k1]); check[i][j] = cov_l[k1] - cov_target[i][j]; check[j][i] = check[i][j]; k1++; } for(j=i+1;j<DIM;j++) printf(" "); printf(" "); for(j=0;j<=i;j++) { printf("%+9lf ", cor_l[k2]); k2++; } printf("\n"); } norm = dnrm2(&dd, (double*)check, &incx); printf("\nTEST PASSED\n"); return 0; }/* This function generates samples with known covarince and mean */int generate_input(int var, int n, double *x, double *a, double *C){ int i, k; for(k=0;k<var;k++) { for(i=0;i<n;i++) { x[i*var+k]= (double)(i+1)*(k+1) / ((double)n * (double)var); } } for(k=0;k<var;k++) { for(i=0;i<var;i++) { C[i+k*var]= ((double)(i+1) * (k+1)) / ((double)n * var * var) * (n+1.0) / 12.0; } } for(k=0;k<var;k++) { a[k]= (double)(k+1) * (n+1) * 0.5 / ((double)var*n); } return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -