⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vsldcorrelationmatrixcol.c

📁 使用INTEL矢量统计类库的程序,包括以下功能: &#61623 Raw and central moments up to 4th order &#61623 Kurtosis and
💻 C
字号:
/*******************************************************************************!                             INTEL CONFIDENTIAL!  Copyright(C) 2007-2008 Intel Corporation. All Rights Reserved.!  The source code contained  or  described herein and all documents related to!  the source code ("Material") are owned by Intel Corporation or its suppliers!  or licensors.  Title to the  Material remains with  Intel Corporation or its!  suppliers and licensors. The Material contains trade secrets and proprietary!  and  confidential  information of  Intel or its suppliers and licensors. The!  Material  is  protected  by  worldwide  copyright  and trade secret laws and!  treaty  provisions. No part of the Material may be used, copied, reproduced,!  modified, published, uploaded, posted, transmitted, distributed or disclosed!  in any way without Intel's prior express written permission.!  No license  under any  patent, copyright, trade secret or other intellectual!  property right is granted to or conferred upon you by disclosure or delivery!  of the Materials,  either expressly, by implication, inducement, estoppel or!  otherwise.  Any  license  under  such  intellectual property  rights must be!  express and approved by Intel in writing.!!*******************************************************************************!  Content:!    Calculation of correlation matrix  Example Program Text!******************************************************************************/#include "mkl.h"#include "vsl_ss.h"#include "stdio.h"#include "math.h"#define N   1000   /* number of observations */#define DIM 3      /* dimension of the task */ #include <math.h>#include <stdio.h>#define RETURN_ON_ERROR                 \    if(errcode<0)                        \    {                                   \        printf("Error: %i\n", errcode);  \        printf("\nTEST FAILED\n");		\        return 0;                       \    }int generate_input(int var, int n, double *x, double *a, double *C);int main(){    int i, j, k1, k2, incx=1;    int fail=0;    int dim=DIM, n=N, dd=DIM*DIM, storage=VSL_SS_MATRIX_COLUMNS_STORAGE;    VSLSSTaskPtr task=0;    double x[N][DIM];  /* matrix of observations */    double cov_target[DIM][DIM];    double cov_f[DIM][DIM], cor_f[DIM][DIM];    double cov_u[DIM*(DIM+1)/2], cor_u[DIM*(DIM+1)/2];    double cov_l[DIM*(DIM+1)/2], cor_l[DIM*(DIM+1)/2];    double check[DIM][DIM], norm;    double mean[DIM], mean_target[DIM];    MKL_INT cov_storage = VSL_SS_MATRIX_L_PACKED_STORAGE; // VSL_SS_MATRIX_FULL_STORAGE;    MKL_INT cor_storage = VSL_SS_MATRIX_L_PACKED_STORAGE; // VSL_SS_MATRIX_FULL_STORAGE;    MKL_INT errcode;        generate_input(DIM, N, (double *)x, mean_target, (double*)cov_target);    for(i=0;i<DIM;i++)    {        for(j=0;j<DIM;j++)        {            cov_f[i][j]=0;            cor_f[i][j]=0;        }    }    for(i=0;i<DIM*(DIM+1)/2;i++)    {        cov_u[i]=0.0;        cor_u[i]=0.0;        cov_l[i]=0.0;        cor_l[i]=0.0;    }    errcode = vsldSSNewTask( &task, &dim, &n, &storage, (double*)x, 0, 0 );    cov_storage = VSL_SS_MATRIX_FULL_STORAGE;    cor_storage = VSL_SS_MATRIX_FULL_STORAGE;    errcode = vsldSSEditCovCor( task, mean, (double*)cov_f, &cov_storage , (double*)cor_f, &cor_storage );    RETURN_ON_ERROR;    for(i=0;i<DIM;i++) mean[i] = 0.0;    errcode = vsldSSCompute( task, VSL_SS_COVARIANCE_MATRIX|VSL_SS_CORRELATION_MATRIX, VSL_SS_FAST_METHOD );    RETURN_ON_ERROR;    cov_storage = VSL_SS_MATRIX_U_PACKED_STORAGE;    cor_storage = VSL_SS_MATRIX_U_PACKED_STORAGE;    errcode = vsldSSEditCovCor( task, mean, (double*)cov_u, &cov_storage , (double*)cor_u, &cor_storage );    RETURN_ON_ERROR;    for(i=0;i<DIM;i++) mean[i] = 0.0;    errcode = vsldSSCompute( task, VSL_SS_COVARIANCE_MATRIX|VSL_SS_CORRELATION_MATRIX, VSL_SS_FAST_METHOD );    RETURN_ON_ERROR;    cov_storage = VSL_SS_MATRIX_L_PACKED_STORAGE;    cor_storage = VSL_SS_MATRIX_L_PACKED_STORAGE;    errcode = vsldSSEditCovCor( task, mean, (double*)cov_l, &cov_storage , (double*)cor_l, &cor_storage );    RETURN_ON_ERROR;    for(i=0;i<DIM;i++) mean[i] = 0.0;    errcode = vsldSSCompute( task, VSL_SS_COVARIANCE_MATRIX|VSL_SS_CORRELATION_MATRIX, VSL_SS_FAST_METHOD );    RETURN_ON_ERROR;    errcode = vslSSDeleteTask( &task );    RETURN_ON_ERROR;    printf(" Dimension of the task: %d\n", DIM);    printf("Number of observations: %d\n\n", N);    printf(" Expected means\n");    for(i=0;i<DIM;i++)    {        printf("%+lf ", mean_target[i]);    }    printf("\n");    printf("\n");    printf(" Expected covariance matrix       Expected correlation matrix\n");    for(i=0;i<DIM;i++)    {        for(j=0;j<DIM;j++)        {            printf("%+lf ", cov_target[i][j]);        }        printf("   ");        for(j=0;j<DIM;j++)        {            printf("%+lf ",                 cov_target[i][j] /                ((j!=i) ? sqrt(cov_target[i][i] * cov_target[j][j]) : 1.0));        }        printf("\n");    }    printf("\n");    printf(" Computed means\n");    for(i=0;i<DIM;i++)    {        printf("%+lf ", mean[i]);    }    printf("\n");    printf("\n");    printf(" Computed covariance matrix       Computed correlation matrix\n");    for(i=0;i<DIM;i++)    {        for(j=0;j<DIM;j++)        {            printf("%+9lf ", cov_f[i][j]);            check[i][j] = cov_f[i][j] - cov_target[i][j];        }        printf("   ");        for(j=0;j<DIM;j++)        {            printf("%+9lf ", cor_f[i][j]);        }        printf("\n");    }    norm = dnrm2(&dd, (double*)check, &incx);    if(norm > 1.0e-10) fail++;    printf("\n");    printf(" Packed (upper) covariance        Packed (upper) correlation\n");    k1=0;    k2=0;    for(i=0;i<DIM;i++)    {        for(j=0;j<i;j++) printf("          ");        for(j=i;j<DIM;j++)        {            printf("%+9lf ", cov_u[k1]);            check[i][j] = cov_u[k1] - cov_target[i][j];            check[j][i] = check[i][j];            k1++;        }        printf("   ");        for(j=0;j<i;j++) printf("          ");        for(j=i;j<DIM;j++)        {            printf("%+9lf ", cor_u[k2]);            k2++;        }        printf("\n");    }    norm = dnrm2(&dd, (double*)check, &incx);    printf("\n");    printf(" Packed (lower) covariance        Packed (lower) correlation\n");    k1=0;    k2=0;    for(i=0;i<DIM;i++)    {        for(j=0;j<=i;j++)        {            printf("%+9lf ", cov_l[k1]);            check[i][j] = cov_l[k1] - cov_target[i][j];            check[j][i] = check[i][j];            k1++;        }        for(j=i+1;j<DIM;j++) printf("          ");        printf("   ");        for(j=0;j<=i;j++)        {            printf("%+9lf ", cor_l[k2]);            k2++;        }        printf("\n");    }    norm = dnrm2(&dd, (double*)check, &incx);    printf("\nTEST PASSED\n");    return 0; }/* This function generates samples with known covarince and mean */int generate_input(int var, int n, double *x, double *a, double *C){    int i, k;    for(k=0;k<var;k++)    {        for(i=0;i<n;i++)        {            x[i*var+k]=                (double)(i+1)*(k+1) /                ((double)n * (double)var);         }    }    for(k=0;k<var;k++)    {        for(i=0;i<var;i++)        {            C[i+k*var]=                ((double)(i+1) * (k+1)) /                ((double)n * var * var) *                (n+1.0) / 12.0;        }    }    for(k=0;k<var;k++)    {        a[k]= (double)(k+1) * (n+1) * 0.5 / ((double)var*n);    }    return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -