⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vsldoutlierdetectionrow.c

📁 使用INTEL矢量统计类库的程序,包括以下功能: &#61623 Raw and central moments up to 4th order &#61623 Kurtosis and
💻 C
字号:
/*******************************************************************************!                             INTEL CONFIDENTIAL!  Copyright(C) 2007-2008 Intel Corporation. All Rights Reserved.!  The source code contained  or  described herein and all documents related to!  the source code ("Material") are owned by Intel Corporation or its suppliers!  or licensors.  Title to the  Material remains with  Intel Corporation or its!  suppliers and licensors. The Material contains trade secrets and proprietary!  and  confidential  information of  Intel or its suppliers and licensors. The!  Material  is  protected  by  worldwide  copyright  and trade secret laws and!  treaty  provisions. No part of the Material may be used, copied, reproduced,!  modified, published, uploaded, posted, transmitted, distributed or disclosed!  in any way without Intel's prior express written permission.!  No license  under any  patent, copyright, trade secret or other intellectual!  property right is granted to or conferred upon you by disclosure or delivery!  of the Materials,  either expressly, by implication, inducement, estoppel or!  otherwise.  Any  license  under  such  intellectual property  rights must be!  express and approved by Intel in writing.!!*******************************************************************************!  Content:!    Outliers detection  Example Program Text!******************************************************************************/#include <stdio.h>#include "mkl.h"#include "vsl_ss.h"/* Uncoment next string for start-up with median's method *///#define MEDIAN/* Uncoment next string for using User's weigths*/#define USER_WEIGHTS#define DIM 30                   /* dimension of the task */#define P           DIM	#define M           3              /* number of BACON algorithm parameters */#define N           100000         /* number of observations */#define EPSIILON    2              /* percent of outliers in the observation*/#define BRNG    VSL_BRNG_MCG31     /* VSL basic generator to be used */#define SEED    7777777            /* Initial value for stream initialization */static double TempRandom[N];    /* Vector of uniform variates to form outliers */static double BaconParams[M];   /* Vector of uniform variates to form outliers */static double BaconWeights[N];  /* Vector of output BACON coefficients */static double XX[P][N];         /* Transposed matrix of observations */static double X[N][P];          /* Input matrix of observations */static double S[P][P];          /* Covariance matrix of input data */static double mean[P];          /* Mean vector of input data */static double meanB[P];         /* Mean vector of "bad" data */static double OutlierSubset[N][P];static double OutlierIndexGen[N];#define RETURN_ON_ERROR                 \    if(errcode < 0)                     \    {                                   \        printf("Error: %i\n", errcode); \        printf("\nTEST FAILED\n");		\        return errcode;                 \    }main(){    MKL_INT n;    /* number of rows(observation) */    MKL_INT p;    /* number of columns (variables) */    MKL_INT i, j, k;    MKL_INT info;    MKL_INT CounterOutlier, FindOutliers;    MKL_INT Coincidence,FalseAlarm,LostTarget;    MKL_INT BaconN;    MKL_INT CounterWeigth = 0;    int errcode,errcode_task;        MKL_INT storage_format_x;    double Ro = 1. / ( P * 20 );    double Epsilon = EPSIILON/100.;    /* Following variables are used in Cholesky factorization subroutine */    char uplo;    double init_method, alpha, beta;    VSLStreamStatePtr stream_good;    VSLStreamStatePtr stream_outl;        VSLSSTaskPtr task = 0;    /* Parameters of the BACON algorithm */    alpha = 1./N;    beta  = 0.005;    BaconN = M;#ifdef MEDIAN    init_method = VSL_SS_BACON_MEDIAN_INIT_METHOD;#endif#ifndef MEDIAN    init_method = VSL_SS_BACON_MAHALANOBIS_INIT_METHOD;#endif    BaconParams[0] = init_method;    BaconParams[1] = alpha;    BaconParams[2] = beta;    n=N;   p=P;    storage_format_x   = VSL_SS_MATRIX_ROWS_STORAGE;    errcode = vsldSSNewTask( &task, &p, &n,  &storage_format_x, (double*)XX,                                 0, 0 );    RETURN_ON_ERROR;    errcode = vsldSSEditOutliersDetection(task, &BaconN,(double *)BaconParams,        (double *)BaconWeights );    RETURN_ON_ERROR;    /***** Printing parametrs *****/    printf("  Sample of outliers detection.\n");    printf("--------------------------------------------\n\n");    printf("Parameters:\n");    printf("    number of variables  : p = %d\n",p);    printf("    number of observation: n = %d\n",n);    printf("                       alpha = %.6f\n",alpha );    printf("                       beta  = %.6f\n\n",beta);        for( i = 0; i < n; i++ )    {        TempRandom[i]   = 0.0;    }        /* Definition of parameters (covariance matrix, means)           for input data */   for ( i = 0; i < p; i++)   {       mean[i]  = 0.0;       meanB[i] = 30.0;       for( j = 0; j < i; j++ )       {           S[i][j] = Ro;       }       for( j = i + 1; j < p; j++ )       {           S[i][j] = Ro;       }       S[i][i] = 1.0;   }   /* Here start generation of observations matrix      (multivarite Gaussian random numbers) */    uplo = 'U';    /* MKL Choelsky factorization routine call */    dpotrf( &uplo, &p, (double*)S, &p, &info );    if( info != 0 )    {        /* Here if function above finished work with error*/        return  info;    }    /* Stream initialization */    errcode = vslNewStream( &stream_good, BRNG, SEED );    RETURN_ON_ERROR;    errcode = vslNewStream( &stream_outl, BRNG, SEED );    RETURN_ON_ERROR;    /* Generating random numbers from multivariate normal distribution */    errcode = vdRngGaussianMV( VSL_METHOD_DGAUSSIANMV_BOXMULLER2,              stream_good, N, (double *)X, P, VSL_MATRIX_STORAGE_FULL,              (double*)mean, (double*)S );    RETURN_ON_ERROR;      /* Generating random numbers from multivariate normal distribution       to form outliers */    errcode = vdRngGaussianMV( VSL_METHOD_DGAUSSIANMV_BOXMULLER2,              stream_outl, N, (double *)OutlierSubset, P,              VSL_MATRIX_STORAGE_FULL, (double*)meanB, (double*)S );    RETURN_ON_ERROR;        /* Generating random numbers from uniform distribution to form outliers */    errcode = vdRngUniform(VSL_METHOD_DUNIFORM_STD, stream_outl,              N, (double *)TempRandom, 0.0, 1.0 );    RETURN_ON_ERROR;    /* Integration of outliers into matrix of observations */    CounterOutlier = 0;    for( i = 0; i < n; i++ )    {        if( TempRandom[i] < Epsilon )        {            CounterOutlier++;            OutlierIndexGen[i] = 0.0;            for( k = 0; k < p; k++)            {                X[i][k] = OutlierSubset[i][k];            }        }        else        {            OutlierIndexGen[i]=1.0;        }    }    for( i = 0; i < n; i++ )    {        for( j = 0; j < p; j++ )        {             XX[j][i] = X[i][j];        }    }    /* Stream  deallocation */    errcode = vslDeleteStream( &stream_good );    RETURN_ON_ERROR;    errcode = vslDeleteStream( &stream_outl );    RETURN_ON_ERROR;        /* Call of BACON function */    errcode_task = vsldSSCompute( task, VSL_SS_OUTLIERS_DETECTION,        VSL_SS_BACON_METHOD );    errcode = vslSSDeleteTask( &task );    RETURN_ON_ERROR;    Coincidence  = 0; FindOutliers = 0;    FalseAlarm   = 0; LostTarget   = 0;    for( i=0; i < n; i++ )    {         if( BaconWeights[i] == 0.0 )         {              FindOutliers++;             if( OutlierIndexGen[i] == 0.0 )             {                 Coincidence++;             }             else             {                 FalseAlarm++;             }         }         else // BaconWeights[i] != 0.0          {             if( OutlierIndexGen[i] == 0.0 )             {                 LostTarget++;             }         }    }    /***** Printing results *****/    printf("\n\n\nResults of BACON algorithm\n");    printf("--------------------------------------------\n\n");    printf("    number of the generated outliers : %d\n",CounterOutlier);    printf("     number of the detected outliers : %d\n",FindOutliers);    printf("\n--------------------------------------------\n\n");    printf("Check of the detection correctness.\n\n");    printf("    coincidence = %3.2f%%\n",          ( CounterOutlier > 0 )? 100.*Coincidence/CounterOutlier : 0);    printf("    false alarm = %3.2f%%\n",          ( FindOutliers > 0 )? 100.*FalseAlarm/FindOutliers : 0 );    printf("    lost target = %3.2f%%\n",          ( CounterOutlier > 0 )? 100.*LostTarget/CounterOutlier : 0 );    printf("\n--------------------------------------------\n");    if(errcode_task != VSL_STATUS_OK )    {        printf("\n errcode is  %d\n",errcode_task);    }    if( Coincidence == CounterOutlier )    {        printf("\nTEST PASSED\n");    }    else     {        printf("\nTEST FAILED\n");    }    return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -