⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 vslsrobustcovariancerow.c

📁 使用INTEL矢量统计类库的程序,包括以下功能: &#61623 Raw and central moments up to 4th order &#61623 Kurtosis and
💻 C
字号:
/*******************************************************************************!                             INTEL CONFIDENTIAL!  Copyright(C) 2007-2008 Intel Corporation. All Rights Reserved.!  The source code contained  or  described herein and all documents related to!  the source code ("Material") are owned by Intel Corporation or its suppliers!  or licensors.  Title to the  Material remains with  Intel Corporation or its!  suppliers and licensors. The Material contains trade secrets and proprietary!  and  confidential  information of  Intel or its suppliers and licensors. The!  Material  is  protected  by  worldwide  copyright  and trade secret laws and!  treaty  provisions. No part of the Material may be used, copied, reproduced,!  modified, published, uploaded, posted, transmitted, distributed or disclosed!  in any way without Intel's prior express written permission.!  No license  under any  patent, copyright, trade secret or other intellectual!  property right is granted to or conferred upon you by disclosure or delivery!  of the Materials,  either expressly, by implication, inducement, estoppel or!  otherwise.  Any  license  under  such  intellectual property  rights must be!  express and approved by Intel in writing.!!*******************************************************************************!  Content:!    Computation of robust covariance matrix and mean Example Program Text!******************************************************************************/#include <stdio.h>#include "vsl_ss.h"#include "mkl.h"/* parameters of the task */#define DIM                   5    /* dimension of task */#define N                  10000   /* number of observations */static float x[DIM*N];            /* matrix of observations */static float t[DIM];              /* vector of means */static float cov[DIM*DIM];        /* covariance matrix */ static float t_est[DIM];       /* vector of robust mean estimates */static float cov_est[DIM*DIM]; /* matrix of robust covariances */static float W[2];             /* array of weights used in covariance                                    estimation */#define RETURN_ON_ERROR                 \    if(errcode<0)                        \    {                                   \        printf("Error: %i\n", errcode);  \        printf("\nTEST FAILED\n");		\        return errcode;                  \    }int GenerateDataset( MKL_INT p, MKL_INT n, float t[], float c[],                      MKL_INT eps, float m, float sigma, float r[] );int main(){    int errcode;    MKL_INT i, j;    MKL_INT p, n;    MKL_INT robust_cov_storage, robust_params_n, eps, storage_format_x;    MKL_INT cov_storage;    float m, sigma;    float breakdown_point, arp, method_accuracy, iter_num;    float robust_method_params[VSL_SS_TBS_PARAMS_N];    VSLSSTaskPtr task=0;    p = DIM;    n = N;    storage_format_x   = VSL_SS_MATRIX_ROWS_STORAGE;    cov_storage        = VSL_SS_MATRIX_FULL_STORAGE;    robust_cov_storage = VSL_SS_MATRIX_FULL_STORAGE;    robust_params_n    = VSL_SS_TBS_PARAMS_N;    /* Generate covariance matrix and vector of means */    for ( i = 0; i < p; i++ )    {        t[i] = 0.0;        for ( j = 0;   j < i; j++ )   cov[i*p+j] = 1.0 / (2.0 * p);        for ( j = i+1; j < p;   j++ ) cov[i*p+j] = 1.0 / (2.0 * p);        cov[i*p+i] = 1.0;    }    printf("Dimension of the task: %d\n", p);    printf("Number of observations: %d\n\n",n);    printf("Original covariance matrix:\n");    for ( i = 0; i < p; i++ )    {         for( j = 0; j < p; j++ ) printf("%f ", cov[i*DIM+j]);         printf("\n");    }    printf("\n");    printf("Original vector of means:\n");    for ( i = 0; i < p; i++ )   printf("%f, ", t[i]);    printf("\n\n");    eps   = 20;    /* ratio of outliers in the dataset */    m     = 5.0;    /* mean of the outliers */    sigma = 0.1;    /* coefficient to compute covarince of outliers */    errcode = GenerateDataset( p, n, t, cov, eps, m, sigma, x );    if ( errcode < 0 )    {        printf("Dataset was not generated\n");        return 0;    }    /* Compute "classical" covariance and mean estimates */    /* Initialize arrays which will hold estimates */    for ( i = 0; i < p*p; i++ ) cov_est[i]=0.0;    for ( i = 0; i < p; i++ ) t_est[i]=0.0;    W[0]=0.0;    W[1]=0.0;    /* Create task */    errcode = vslsSSNewTask( &task, &p, &n, &storage_format_x, x, 0, 0 );	RETURN_ON_ERROR;    /* Register array of weights in the task */    errcode = vslsSSEditTask( task, VSL_SS_ACCUMULATED_WEIGHT, W );	RETURN_ON_ERROR;    /* Register array for covariance estimate */      errcode = vslsSSEditCovCor( task, t_est, cov_est, &cov_storage, 0, 0 );	RETURN_ON_ERROR;    errcode = vslsSSCompute( task,                          VSL_SS_COVARIANCE_MATRIX, VSL_SS_FAST_METHOD );	RETURN_ON_ERROR;    printf("Classical covariance estimate:\n");	RETURN_ON_ERROR;    printf("\n");    printf("Classical mean estimate:\n");    for ( i = 0; i < p; i++ )   printf("%f, ", t_est[i]);    printf("\n\n");    for ( i = 0; i < p*p; i++ ) cov_est[i]=0.0f;    for ( i = 0; i < p; i++ ) t_est[i]=0.0f;    /* Compute robust  covariance and mean estimates */    breakdown_point = 0.4;    arp             = 0.001;    method_accuracy = 0.001;    iter_num        = 20;    robust_method_params[0] = breakdown_point;    robust_method_params[1] = arp;    robust_method_params[2] = method_accuracy;    robust_method_params[3] = iter_num;    errcode =  vslsSSEditRobustCovariance( task, &robust_cov_storage,                               &robust_params_n, robust_method_params,                                                     t_est, cov_est );	RETURN_ON_ERROR;    errcode = vslsSSCompute( task, VSL_SS_ROBUST_COVARIANCE,                                    VSL_SS_ROBUST_TBS_METHOD );	RETURN_ON_ERROR;    printf("Robust covariance estimate:\n");    for ( i = 0; i < p; i++ )    {         for( j = 0; j < p; j++ ) printf("%f ", cov_est[i*DIM+j]);         printf("\n");    }    printf("\n");    printf("Robust mean estimate:\n");    for ( i = 0; i < p; i++ )   printf("%f, ", t_est[i]);    printf("\n\n");    errcode = vslSSDeleteTask( &task );	RETURN_ON_ERROR;    printf("\nTEST PASSED\n");    return 0;}static float r1[DIM*N], r2[DIM*N], mean[DIM], T[DIM*DIM];int GenerateDataset( MKL_INT p, MKL_INT n, float t[], float c[],                      MKL_INT eps, float m, float sigma, float r[] ){    int errcode;    VSLStreamStatePtr stream;    int i,j, mc;    char uplo;    int lda;    int info;    errcode = 0;    mc = (n * eps)/100; /* number of outliers */    for ( i = 0; i < p; i++ )     {        for ( j = 0; j < p; j++ ) T[i*p+j] = c[i*p+j];    }    uplo = 'U';                    lda=p;    spotrf( &uplo, &p, T, &lda, &info );    errcode = vslNewStream( &stream, VSL_BRNG_MT19937, 7777777 );    if ( errcode < 0 ) return errcode;    /* Generate "good" points of the matrix of observations */    if ( n-mc )    {        errcode = vsRngGaussianMV( VSL_METHOD_DGAUSSIAN_ICDF, stream, n-mc,                                   r1, p, VSL_MATRIX_STORAGE_FULL, t, T );        if ( errcode < 0 ) return errcode;    }    /* Generate "bad" points of the matrix of observations */    if ( mc )    {        for ( i = 0; i < p; i++ )         {            mean[i] = m;            for ( j = 0; j < p; j++ )             {                T[i*p+j] = eps * c[i*p+j];            }        }                spotrf( &uplo, &p, T, &lda, &info );        errcode = vsRngGaussianMV( VSL_METHOD_DGAUSSIAN_ICDF, stream, mc,                                    r2, p, VSL_MATRIX_STORAGE_FULL, mean, T );        if ( errcode < 0 ) return errcode;    }    /* Copy results to the matrix r */    for ( i = 0; i < n-mc; i++ )    {       for ( j = 0; j < p; j++ ) r[j*n+i] = r1[i*p+j];    }    for ( i = n-mc; i < n; i++ )    {       for ( j = 0; j < p; j++ ) r[j*n+i] = r2[(i-(n-mc))*p+j];    }    errcode = vslDeleteStream( &stream );    return errcode;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -