📄 vslsdataprocessinginchunks.c
字号:
/*******************************************************************************! INTEL CONFIDENTIAL! Copyright(C) 2007-2008 Intel Corporation. All Rights Reserved.! The source code contained or described herein and all documents related to! the source code ("Material") are owned by Intel Corporation or its suppliers! or licensors. Title to the Material remains with Intel Corporation or its! suppliers and licensors. The Material contains trade secrets and proprietary! and confidential information of Intel or its suppliers and licensors. The! Material is protected by worldwide copyright and trade secret laws and! treaty provisions. No part of the Material may be used, copied, reproduced,! modified, published, uploaded, posted, transmitted, distributed or disclosed! in any way without Intel's prior express written permission.! No license under any patent, copyright, trade secret or other intellectual! property right is granted to or conferred upon you by disclosure or delivery! of the Materials, either expressly, by implication, inducement, estoppel or! otherwise. Any license under such intellectual property rights must be! express and approved by Intel in writing.!!*******************************************************************************! Content:! Data processing in chunks Example Program Text!******************************************************************************/#include "mkl.h"#include "vsl_ss.h"#include "stdio.h"#include "math.h"#define BRNG VSL_BRNG_MCG31 /* VSL basic generator to be used */#define SEED 7777777 /* Initial value for stream initialization */#define METHOD VSL_METHOD_DGAUSSIANMV_ICDF#define RETURN_ON_ERROR \ if(errcode < 0) \ { \ printf("Error: %i\n", errcode); \ return errcode; \ }int generate_input(int, int, float *, float *, float *, float *);#define P 5 /* dimension of the task */ #define N 100000 /* number of observations */static float X[N*P]; /* Input matrix of observations */static float S[P*P]; /* Covariance matrix of input data */static float Cov[P][P]; /* Estimated covariance matrix in chunks*/static float CovFull[P][P]; /* Estimated covariance matrix*/int main(void){ MKL_INT p = P, n = N, n_portion, i, j, counter; float mean[P] = {-1.0, 1.0, 2.0, -3.0, 4.0};/* True mean vector */ float Variance[P] = { 1.0, 1.0, 1.0, 1.0, 1.0};/* True variance vector */ float W[2] = {0.0, 0.0}; /* array of weights used in covariance estimation */ float weights[N]; int indices[P] = {0, 1, 1, 0, 1}; float Xmean[P]; /* Mean vector */ float Raw2Mom[P]; /* raw 2 moment vector */ float Central2Mom[P]; /* Central 2 moment vector */ float Maximum[P]; /* vector of max values */ float Minimum[P]; /* vector of min values */ float MaximumFull[P]; /* vector of max values */ float MinimumFull[P]; /* vector of min values */ float *X_portion,dif,temp1,temp2; MKL_INT Cov_storage; int errcode, test=0; VSLSSTaskPtr task = 0; MKL_INT storage_format_x; n_portion = n/100; /* Generation of observations matrix */ errcode = generate_input(n, p, X, mean, Variance, weights); RETURN_ON_ERROR; X_portion = X; storage_format_x = VSL_SS_MATRIX_COLUMNS_STORAGE; /* Create task */ errcode = vslsSSNewTask( &task, &p, &n_portion, &storage_format_x, X_portion, weights, indices ); RETURN_ON_ERROR; /* Register array of weights in the task */ errcode = vslsSSEditTask( task, VSL_SS_ACCUMULATED_WEIGHT, W ); RETURN_ON_ERROR; /* Register array for moments estimate */ errcode = vslsSSEditMoments( task, Xmean, Raw2Mom,0,0,Central2Mom, 0, 0); RETURN_ON_ERROR; Cov_storage = VSL_SS_MATRIX_FULL_STORAGE; /* Register array for covariance estimate */ errcode = vslsSSEditCovCor( task, Xmean, (float*)Cov, &Cov_storage , 0, 0); RETURN_ON_ERROR; /* Inialization of the arrays */ for( i = 0; i < p; i++ ) { Maximum[i]=0.; Minimum[i]=0.; Xmean[i] = 0.0; Central2Mom[i] = 0.0; Raw2Mom[i] = 0.0; for( j = 0; j < p; j++ ) { Cov[i][j] = 0.0; } } for( counter = 0; counter < 100; counter++ ) { X_portion = X + counter*n_portion*p; /* Register new pointer in the task */ errcode = vslsSSEditTask( task, VSL_SS_OBSERVATIONS, X_portion ); RETURN_ON_ERROR; errcode = vslsSSEditTask( task, VSL_SS_MAX_ARRAY, Maximum); RETURN_ON_ERROR; errcode = vslsSSEditTask( task, VSL_SS_MIN_ARRAY, Minimum ); RETURN_ON_ERROR; /* Compute covariance matrix, variances and means estimates */ errcode = vslsSSCompute(task,VSL_SS_MEAN| VSL_SS_2CENTRAL_MOMENT| VSL_SS_COVARIANCE_MATRIX| VSL_SS_MIN|VSL_SS_MAX, VSL_SS_FAST_METHOD ); RETURN_ON_ERROR; } printf("\n Mins are: "); for(j = 0; j < p; j++) { if(indices[j] == 0) continue; printf("%lf ", Minimum[j]); } printf("\n"); printf("\n Maxs are: "); for(j = 0; j < p; j++) { if(indices[j] == 0) continue; printf("%lf ", Maximum[j]); } printf("\n"); printf("\n Means are: "); for(j = 0; j < p; j++) { if(indices[j] == 0) continue; printf("%f ", Xmean[j]); } printf("\n"); printf("\n Variances are: "); for(j = 0; j < p; j++) { if(indices[j] == 0) continue; printf("%f ", Central2Mom[j]); } printf("\n"); printf("\nCovariance matrix\n\n"); for(i = 0; i < p; i++) { for(j = 0; j < p; j++) { printf("%f ", Cov[i][j]); } printf("\n"); } printf("\n"); /* Validation */ errcode = vslsSSEditTask( task, VSL_SS_MAX_ARRAY, MaximumFull); RETURN_ON_ERROR; errcode = vslsSSEditTask( task, VSL_SS_MIN_ARRAY, MinimumFull); RETURN_ON_ERROR; W[0] = 0.0; W[1] = 0.0; for( i = 0; i < p; i++ ) { MaximumFull[i]=0.; MinimumFull[i]=0.; Xmean[i] = 0.0; Central2Mom[i] = 0.0; Raw2Mom[i] = 0.0; for( j = 0; j < p; j++ ) { CovFull[i][j] = 0.0; } } /* Matrix norm*/ errcode = vslsSSEditTask( task, VSL_SS_OBSERVATIONS, X ); RETURN_ON_ERROR; errcode = vsliSSEditTask( task, VSL_SS_OBSERVATIONS_NUMBER, &n ); RETURN_ON_ERROR; errcode = vslsSSEditTask( task,VSL_SS_COVARIANCE_ARRAY,(float*)CovFull ); RETURN_ON_ERROR; /* Compute covariance matrix, mins and maxs estimates */ errcode = vslsSSCompute(task,VSL_SS_COVARIANCE_MATRIX| VSL_SS_MIN|VSL_SS_MAX, VSL_SS_FAST_METHOD ); dif = 1.0; temp1 = 0.0; temp2 = 0.0; for ( i = 0; i < p; i++ ) { for ( j = 0; j < p; j++ ) { temp1 += (Cov[i][j]-CovFull[i][j])*(Cov[i][j]-CovFull[i][j]); temp2 += Cov[i][j]*Cov[i][j]; } } dif = sqrt(temp1/temp2); if(dif > 1e-1) { test = -1; } for(j = 0; j < p; j++) { if(indices[j] == 0) continue; if(!MinimumFull[j] == Minimum[j]) test = -1; if(!MaximumFull[j] == Maximum[j]) test = -1; } if( test != 0 ) { printf("\nTEST FAILED\n"); } else { printf("\nTEST PASSED\n"); } /* Delete task */ errcode = vslSSDeleteTask( &task ); RETURN_ON_ERROR; return 0;}int generate_input(int n, int p, float *X, float *mean, float *Variance, float *weights){ MKL_INT i, j; MKL_INT errcode; float Ro = 1. / ( p * 2 ); /* Following variables are used in Cholesky factorization subroutine */ char uplo; VSLStreamStatePtr stream_good; /* Definition of parameters (covariance matrix, means) for input data */ for ( i = 0; i < n; i++) { weights[i] = 1.; } for ( i = 0; i < p; i++) { for( j = 0; j < i; j++ ) { S[i*p+j] = Ro; S[j*p+i] = Ro; } S[i*p+i] = Variance [i]; } /* Here start generation of observations matrix (multivarite Gaussian random numbers) */ uplo = 'U'; /* MKL Choelsky factorization routine call */ spotrf( &uplo, &p, S, &p, &errcode ); RETURN_ON_ERROR; /* Stream initialization */ errcode = vslNewStream( &stream_good, BRNG, SEED ); RETURN_ON_ERROR; /* Generating random numbers from multivariate normal distribution */ errcode = vsRngGaussianMV( METHOD, stream_good, n, X, p, VSL_MATRIX_STORAGE_FULL, mean, S ); RETURN_ON_ERROR; /* Stream deallocation */ errcode = vslDeleteStream( &stream_good ); RETURN_ON_ERROR; return 0;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -