📄 rfc3434.mib
字号:
HC-ALARM-MIB DEFINITIONS ::= BEGINIMPORTS MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, Integer32, Counter32, Unsigned32 FROM SNMPv2-SMI MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP FROM SNMPv2-CONF RowStatus, VariablePointer, StorageType, TEXTUAL-CONVENTION FROM SNMPv2-TC CounterBasedGauge64 FROM HCNUM-TC rmon, OwnerString, rmonEventGroup FROM RMON-MIB;hcAlarmMIB MODULE-IDENTITY LAST-UPDATED "200212160000Z" ORGANIZATION "IETF RMONMIB Working Group" CONTACT-INFO " Andy Bierman Cisco Systems, Inc. Tel: +1 408 527-3711 E-mail: abierman@cisco.com Postal: 170 West Tasman Drive San Jose, CA USA 95134 Keith McCloghrie Cisco Systems, Inc. Tel: +1 408 526-5260 E-mail: kzm@cisco.com Postal: 170 West Tasman Drive San Jose, CA USA 95134 Send comments to <rmonmib@ietf.org> Mailing list subscription info: http://www.ietf.org/mailman/listinfo/rmonmib " DESCRIPTION "This module defines Remote Monitoring MIB extensions for High Capacity Alarms. Copyright (C) The Internet Society (2002). This version of this MIB module is part of RFC 3434; see the RFC itself for full legal notices." REVISION "200212160000Z" DESCRIPTION "Initial version of the High Capacity Alarm MIB module. This version published as RFC 3434." ::= { rmon 29 }hcAlarmObjects OBJECT IDENTIFIER ::= { hcAlarmMIB 1 }hcAlarmNotifications OBJECT IDENTIFIER ::= { hcAlarmMIB 2 }hcAlarmConformance OBJECT IDENTIFIER ::= { hcAlarmMIB 3 }hcAlarmControlObjects OBJECT IDENTIFIER ::= { hcAlarmObjects 1 }hcAlarmCapabilitiesObjects OBJECT IDENTIFIER ::= { hcAlarmObjects 2 }---- Textual Conventions--HcValueStatus ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "This data type indicates the validity and sign of the data in associated object instances which represent the absolute value of a high capacity numeric quantity. Such an object may be represented with one or more object instances. An object of type HcValueStatus MUST be defined within the same structure as the object(s) representing the high capacity absolute value. If the associated object instance(s) representing the high capacity absolute value could not be accessed during the sampling interval, and is therefore invalid, then the associated HcValueStatus object will contain the value 'valueNotAvailable(1)'. If the associated object instance(s) representing the high capacity absolute value are valid and actual value of the sample is greater than or equal to zero, then the associated HcValueStatus object will contain the value 'valuePositive(2)'. If the associated object instance(s) representing the high capacity absolute value are valid and the actual value of the sample is less than zero, then the associated HcValueStatus object will contain the value 'valueNegative(3)'. The associated absolute value should be multiplied by -1 to obtain the true sample value." SYNTAX INTEGER { valueNotAvailable(1), valuePositive(2), valueNegative(3) }---- High Capacity Alarm Table--hcAlarmTable OBJECT-TYPE SYNTAX SEQUENCE OF HcAlarmEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A list of entries for the configuration of high capacity alarms." ::= { hcAlarmControlObjects 1 }hcAlarmEntry OBJECT-TYPE SYNTAX HcAlarmEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "A conceptual row in the hcAlarmTable. Entries are usually created in this table by management application action, but may also be created by agent action as well." INDEX { hcAlarmIndex } ::= { hcAlarmTable 1 }HcAlarmEntry ::= SEQUENCE { hcAlarmIndex Integer32, hcAlarmInterval Integer32, hcAlarmVariable VariablePointer, hcAlarmSampleType INTEGER, hcAlarmAbsValue CounterBasedGauge64, hcAlarmValueStatus HcValueStatus, hcAlarmStartupAlarm INTEGER, hcAlarmRisingThreshAbsValueLo Unsigned32, hcAlarmRisingThreshAbsValueHi Unsigned32, hcAlarmRisingThresholdValStatus HcValueStatus, hcAlarmFallingThreshAbsValueLo Unsigned32, hcAlarmFallingThreshAbsValueHi Unsigned32, hcAlarmFallingThresholdValStatus HcValueStatus, hcAlarmRisingEventIndex Integer32, hcAlarmFallingEventIndex Integer32, hcAlarmValueFailedAttempts Counter32, hcAlarmOwner OwnerString, hcAlarmStorageType StorageType, hcAlarmStatus RowStatus }hcAlarmIndex OBJECT-TYPE SYNTAX Integer32 (1..65535) MAX-ACCESS not-accessible STATUS current DESCRIPTION "An arbitrary integer index value used to uniquely identify this high capacity alarm entry." ::= { hcAlarmEntry 1 }hcAlarmInterval OBJECT-TYPE SYNTAX Integer32 (1..2147483647) UNITS "seconds" MAX-ACCESS read-create STATUS current DESCRIPTION "The interval in seconds over which the data is sampled and compared with the rising and falling thresholds. When setting this variable, care should be taken in the case of deltaValue sampling - the interval should be set short enough that the sampled variable is very unlikely to increase or decrease by more than 2^63 - 1 during a single sampling interval. This object may not be modified if the associated hcAlarmStatus object is equal to active(1)." ::= { hcAlarmEntry 2 }hcAlarmVariable OBJECT-TYPE SYNTAX VariablePointer MAX-ACCESS read-create STATUS current DESCRIPTION "The object identifier of the particular variable to be sampled. Only variables that resolve to an ASN.1 primitive type of INTEGER (INTEGER, Integer32, Counter32, Counter64, Gauge, or TimeTicks) may be sampled. Because SNMP access control is articulated entirely in terms of the contents of MIB views, no access control mechanism exists that can restrict the value of this object to identify only those objects that exist in a particular MIB view. Because there is thus no acceptable means of restricting the read access that could be obtained through the alarm mechanism, the probe must only grant write access to this object in those views that have read access to all objects on the probe. This object may not be modified if the associated hcAlarmStatus object is equal to active(1)." ::= { hcAlarmEntry 3 }hcAlarmSampleType OBJECT-TYPE SYNTAX INTEGER { absoluteValue(1), deltaValue(2) } MAX-ACCESS read-create STATUS current DESCRIPTION "The method of sampling the selected variable and calculating the value to be compared against the thresholds. If the value of this object is absoluteValue(1), the value of the selected variable will be compared directly with the thresholds at the end of the sampling interval. If the value of this object is deltaValue(2), the value of the selected variable at the last sample will be subtracted from the current value, and the difference compared with the thresholds. If the associated hcAlarmVariable instance could not be obtained at the previous sample interval, then a delta sample is not possible, and the value of the associated hcAlarmValueStatus object for this interval will be valueNotAvailable(1). This object may not be modified if the associated hcAlarmStatus object is equal to active(1)." ::= { hcAlarmEntry 4 }hcAlarmAbsValue OBJECT-TYPE SYNTAX CounterBasedGauge64 MAX-ACCESS read-only STATUS current DESCRIPTION "The absolute value (i.e., unsigned value) of the hcAlarmVariable statistic during the last sampling period. The value during the current sampling period is not made available until the period is completed. To obtain the true value for this sampling interval, the associated instance of hcAlarmValueStatus must be checked, and the value of this object adjusted as necessary. If the MIB instance could not be accessed during the sampling interval, then this object will have a value of zero and the associated instance of hcAlarmValueStatus will be set to 'valueNotAvailable(1)'." ::= { hcAlarmEntry 5 }hcAlarmValueStatus OBJECT-TYPE SYNTAX HcValueStatus MAX-ACCESS read-only STATUS current DESCRIPTION "This object indicates the validity and sign of the data for the hcAlarmAbsValue object, as described in the HcValueStatus textual convention." ::= { hcAlarmEntry 6 }hcAlarmStartupAlarm OBJECT-TYPE SYNTAX INTEGER { risingAlarm(1), fallingAlarm(2), risingOrFallingAlarm(3) } MAX-ACCESS read-create STATUS current DESCRIPTION "The alarm that may be sent when this entry is first set to active. If the first sample after this entry becomes active is greater than or equal to the rising threshold and this object is equal to risingAlarm(1) or risingOrFallingAlarm(3), then a single rising alarm will be generated. If the first sample after this entry becomes valid is less than or equal to the falling threshold and this object is equal to fallingAlarm(2) or risingOrFallingAlarm(3), then a single falling alarm will be generated. This object may not be modified if the associated hcAlarmStatus object is equal to active(1)." ::= { hcAlarmEntry 7 }hcAlarmRisingThreshAbsValueLo OBJECT-TYPE SYNTAX Unsigned32 MAX-ACCESS read-create STATUS current DESCRIPTION "The lower 32 bits of the absolute value for threshold for the sampled statistic. The actual threshold value is determined by the associated instances of the hcAlarmRisingThreshAbsValueHi and hcAlarmRisingThresholdValStatus objects, as follows: ABS(threshold) = hcAlarmRisingThreshAbsValueLo + (hcAlarmRisingThreshAbsValueHi * 2^^32) The absolute value of the threshold is adjusted as required, as described in the HcValueStatus textual convention. These three object instances are conceptually combined to represent the rising threshold for this entry. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval was less than this threshold, a single event will be generated. A single event will also be generated if the first sample after this entry becomes valid is greater than or equal to this threshold and the associated hcAlarmStartupAlarm is equal to risingAlarm(1) or risingOrFallingAlarm(3). After a rising event is generated, another such event will not be generated until the sampled value falls below this threshold and reaches the threshold identified by the hcAlarmFallingThreshAbsValueLo, hcAlarmFallingThreshAbsValueHi, and hcAlarmFallingThresholdValStatus objects. This object may not be modified if the associated hcAlarmStatus object is equal to active(1)." ::= { hcAlarmEntry 8 }hcAlarmRisingThreshAbsValueHi OBJECT-TYPE SYNTAX Unsigned32 MAX-ACCESS read-create STATUS current DESCRIPTION "The upper 32 bits of the absolute value for threshold for the sampled statistic. The actual threshold value is determined by the associated instances of the hcAlarmRisingThreshAbsValueLo and hcAlarmRisingThresholdValStatus objects, as follows: ABS(threshold) = hcAlarmRisingThreshAbsValueLo + (hcAlarmRisingThreshAbsValueHi * 2^^32) The absolute value of the threshold is adjusted as required, as described in the HcValueStatus textual convention. These three object instances are conceptually combined to represent the rising threshold for this entry. When the current sampled value is greater than or equal to this threshold, and the value at the last sampling interval was less than this threshold, a single event will be generated. A single event will also be generated if the first sample after this entry becomes valid is greater than or equal to this threshold and the associated hcAlarmStartupAlarm is equal to risingAlarm(1) or risingOrFallingAlarm(3). After a rising event is generated, another such event will not be generated until the sampled value falls below this threshold and reaches the threshold identified by the hcAlarmFallingThreshAbsValueLo, hcAlarmFallingThreshAbsValueHi, and hcAlarmFallingThresholdValStatus objects.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -