⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 contents.html

📁 非线性时间学列分析工具
💻 HTML
📖 第 1 页 / 共 2 页
字号:
If you are looking for a program that reads your signal and issues a numberthat says "correlation dimension", you got yourself the wrong package.  Wethink you are still better off than getting such a wrong answer. The programsin this section carry out the calculations necessary to detect scaling and selfsimilarity in a fractal attractor. You will have to establish scaling andeventually, in favourable cases, extract the dimension or entropy by carefulevaluation of the data produced by these programs.<p>There are two alternative implementations of the Grassbeger-Procacciacorrelation integral in this package. The program <a href="docs_c/d2.html">d2</a> by Rainer Hegger to our knowledgeis the fastest and most reliable implementation that is currently available.It can also handle multivariate data and mixed embeddings.For the very conservative, there is a slow but simple alternativecalled  <a href="docs_f/c2naive.html">c2naive</a> that works on scalar dataonly. Post-processing can be performed on the output in order to obtain Takens' estimator or the Gaussian kernel correlation integral, or just forsmoothing. <p>A fixed mass algorithm for the information dimension D1 is available which alsocan handle multivariate data and mixed embeddings, and a box-counting implementation of the order Q Renyi entropies formultifractal studies.<p>You may want to consult the <a href="chaospaper/node29.html">introduction</a>paper for initial material on dimension estimation. If you are serious, you will needto study some of the literature cited there as well.<p><table border><tr valign=top><td>Correlation integral C2</td>    <td><a href="docs_c/d2.html">d2</a>,         <a href="docs_c/av-d2.html">av-d2</a>,        <a href="docs_f/c2naive.html">c2naive</a>,        <a href="docs_f/c2d.html">c2d</a></td></tr><tr><td>Takens estimator</td>    <td><a href="docs_f/c2t.html">c2t</a></td></tr><tr><td>Gaussian kernel C2</td>    <td><a href="docs_f/c2g.html">c2g</a></td></tr><tr><td>Fixed mass estiamtion of D1</td>    <td><a href="docs_f/c1.html">c1</a></td></tr><tr><td>Renyi Entropies of Qth order</td>    <td><a href="docs_c/boxcount.html">       boxcount</a></td></tr></table><h3><a name="lyapunov">Lyapunov exponents</a></h3>Lyapunov exponents are an important means of quantification for unstablesystems. They are however difficult to estimate from a time series.Unless low dimensional, high quality data is at hand, one should not attempt tocalculate the full spectrum. Try to compute the maximal exponent first.The two implementations differ slightly.While <ahref="docs_c/lyap_k.html">lyap_k</a> implements the formula by<a href="chaospaper/citation.html#holger">Kantz</a>, <a href="docs_c/lyap_r.html">lyap_r</a> uses that by <a href="chaospaper/citation.html#rose">Rosenstein et al.</a> which differs only in the definition of the neighbourhoods.We recommend to use the former version, <a href="docs_c/lyap_k.html">lyap_k</a>.<p>The estimation of Lyapunov exponents is also discussed in the <a href="chaospaper/node26.html">introduction</a> paper. A recent addition is aprogramm to compute finite time exponents which are not invariant but containadditional information. <p><table border><tr><td>Maximal exponent</td>    <td><a href="docs_c/lyap_k.html">lyap_k</a>,         <a href="docs_c/lyap_r.html">lyap_r</a></td></tr><tr><td>Lyapunov spectrum</td>    <td><a href="docs_c/lyap_spec.html">lyap_spec</a></tr><tr><td>Finite size exponents</td>    <td><a href="docs_c/fsle.html">fsle</a></tr></table><h3><a name="surrogates">Surrogate data</a></h3>Before attempting any sophisticated nonlinear time series analysis, one shouldtry to establish that nonlinearity is indeed present. The most suitable methodfor this is the approach of surrogate data. We present two schemes for thegeneration of surrogate time series, one using iterative adjustments ofspectrum and distribution, and a very general framework for constrainedrandomization that is based on combinatorial minimization of a cost function.The latter approach is more like a toolbox, a starting point for your ownideas on suitable null hypotheses etc. A few basic discriminating statisticsare also provided. <p>There is a short overview page for <ahref="docs_f/test.html">nonlinearity tests</a>. There is also a sectionin the <a href="chaospaper/node35.html">introduction</a> paper.<p><table border><tr><td>Make surrogate data</td>    <td><a href="docs_f/surrogates.html">surrogates</a></td></tr><tr><td>Determine end-to-end mismatch</td>    <td><a href="docs_f/endtoend.html">endtoend</a></td></tr><tr><td>General constrained randomization</td>    <td><a href="docs_f/randomize.html">randomize</a></td></tr><tr><td>Discriminating statistics</td>    <td><a href="docs_f/timerev.html">timerev</a>,        <a href="docs_f/predict.html">predict</a></td></tr></table><h3><a name="spike">Spike trains</a></h3>Sequences of times of singular events (heart beats, neuronal spikes etc.),or sequences of intervals between such events (RR-intervals etc.) require specialised techniques, even for their linear analysis. Below find a list ofroutines that may proove useful for this type of data. <p><table border><tr><td>Event/intervcal conversion</td>    <td><a href="docs_f/intervals.html">intervals</a></td></tr><tr><td>Interval/event conversion</td>    <td><a href="docs_f/events.html">events</a></td></tr><tr><td>Autocorrelation function of event times</td>    <td><a href="docs_f/spikeauto.html">spikeauto</a></td></tr><tr><td>Power spectrum of event times</td>    <td><a href="docs_f/spikespec.html">spikespec</a></td></tr><tr><td>Surrogate data preserving event time autocorrelations</td>    <td><a href="docs_f/randomize_spike.html">randomize_spikeauto_exp_random</a></td></tr><tr><td>Surrogate data preserving event time power spectrum</td>    <td><a href="docs_f/randomize_spike.html">randomize_spikespec_exp_event</a></td></tr></table><h3><a name="multivariate">Multivariate time series</a></h3>TISEAN's multivariate section is still growing - like the research body inthis area. As a convention, program names for ``cross-'' quantitiescomputed between two signals start with <font color=blue><tt>x</tt></font>. Those programs that can handle scalar aswell as multivariate data don't follow any name convention.<p>Currently, three (cross-) similarity measures are available, a linear andtwo nonlinear ones. Further, there is a zeroth order predictor usingmultivariate embeddings.A few general routines that can handle multivariate data are also mentionedbelow. Note in particular the multivariate surrogate data generator, theGrassberger-Procaccia correlation sum, and the fixed mass D1 estimator.<p>The general convention for column selection is as follows.Columns can be given as a comma seperated list with the option<font color=blue><tt> -c#[,#]  </tt></font>. Wherever the number of columns isselectable, this can be done with the option <font color=blue><tt> -m#</tt></font> or the first number in its argument. The precedence of thesesettings are as follows:<ul><dt>  <font color=blue><tt> -m </tt></font> overrides   <font color=blue><tt> -c </tt></font>   <dt>  <font color=blue><tt> -c </tt></font> overrides the default     <font color=red>only</font> if <font color=red>more</font> columns are    specified. </ul>Exceptions to this general convention are possible and mentioned in thespecific program descriptions.<p><table border><tr><td>Multivariate linear model</td>   <td><a href="docs_c/ar-model.html">ar-model</a></td></tr><tr><td>Multivariate noise generation</td>   <td><a href="docs_c/makenoise.html">makenoise</a></td></tr><tr><td>Linear cross-correlations</td>   <td><a href="docs_c/xcor.html">xcor</a></td></tr><tr><td>Extrema of a multivariate signal</td>   <td><a href="docs_c/extrema.html">extrema</a></td></tr><tr><td>Savitzky-Golay filter</td>   <td><a href="docs_c/sav_gol.html">sav_gol</a></td></tr><tr><td>Recurrence plot</td>   <td><a href="docs_c/recurr.html">recurr</a></td></tr><tr><td>Nonlinear cross-prediction</td>   <td><a href="docs_c/xzero.html">xzero</a></td></tr><tr><td>Cross-correlation integral</td>   <td><a href="docs_c/xc2.html">xc2</a></td></tr><tr><td>Correlation integral, also for multivariate data</td>   <td><a href="docs_c/d2.html">d2</a></td></tr><tr><td>Fixed mass approach to D1, also for multivariate data</td>   <td><a href="docs_f/c1.html">c1</a></td></tr><tr><td>Lyapunov spectra</td>   <td><a href="docs_c/lyap_spec.html">lyap_spec</a></td></tr><tr><td>Renyi entropies</td>   <td><a href="docs_c/boxcount.html">boxcount</a></td></tr><tr><td>Zeroth order prediction on multivariate time series</td>   <td><a href="docs_c/zeroth.html">zeroth</a></td></tr><tr><td>Locally linear prediction on multivariate time series</td>   <td><a href="docs_c/nstep.html">nstep</a></td></tr><tr><td>Compare two signals</td>   <td><a href="docs_f/compare.html">compare</a></td></tr><tr><td>Choose sub-sequence or columns</td>    <td><a href="docs_f/choose.html">choose</a></td></tr><tr><td>Make surrogate data, also multivariate</td>    <td><a href="docs_f/surrogates.html">surrogates</a></td></tr><tr><td>Determine end-to-end mismatch, also multivariate</td>    <td><a href="docs_f/endtoend.html">endtoend</a></td></tr></table><hr><em>Copyright &#169; Rainer Hegger, Holger Kantz, Thomas Schreiber (1999)</em><p><a href="index.html" target="_top">TISEAN home</a></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -