⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 upo.html

📁 非线性时间学列分析工具
💻 HTML
字号:
<html><head><title>Unstable periodic orbits</title></head><body bgcolor="#ffffff"><h3>Unstable periodic orbits</h3><font color=blue><tt>upo <font color=red> -m# [-r# | -v#]</font> [-p# -w# -W# -a# -s# -n# -o </tt><em>outfile</em><tt> -l# -x# -c# -V# -h] </tt><em> file(s)</em></font><blockquote>   <br>     <font color=red><tt> -m  </tt></font>embedding dimension   <br>     <font color=red><tt> -r  </tt></font>absolute kernel bandwidth   <br>     <font color=red><tt> -v  </tt></font>same as fraction of standard deviation   <br>     <font color=blue><tt> -p  </tt></font>period of orbit (1)   <br>     <font color=blue><tt> -w  </tt></font>minimal separation of trial points (e)   <br>     <font color=blue><tt> -W  </tt></font>minimal separation of distinct orbits (e)   <br>     <font color=blue><tt> -a  </tt></font>maximal error of orbit to be plotted (all plotted)   <br>     <font color=blue><tt> -s  </tt></font>initial separation for stability (e)   <br>     <font color=blue><tt> -n  </tt></font>number of trials (all points)   <br>     <font color=blue><tt> -l  </tt></font>number of values to be read (all)   <br>     <font color=blue><tt> -x  </tt></font>number of values to be skipped (0)   <br>     <font color=blue><tt> -c  </tt></font><a href=../general.html#column>column to be read</a> (1 or <font color=blue><em>file</em></font>,#)   <br>     <font color=blue><tt> -o  </tt></font><a href=../general.html#outfile>output file name</a>, just <font color=blue><tt> -o  </tt></font>means <font color=blue><em>file</em></font><font color=blue><tt>_upo</tt></font><font color=blue><tt>_pp</tt></font>   <br>     <font color=blue><tt> -V  </tt></font><a href=../general.html#verbosity>verbosity level</a> (0 = only fatal errors)   <br>     <font color=blue><tt> -h  </tt></font>show this message<p>   <a href=../general.html#verbosity>verbosity level</a> (add what you want):<p>    <font color=blue>             1</font> = input/output<br>    <font color=blue>             2</font> = print orbits found<br>    <font color=blue>             4</font> = status after 1000 points<br>    <font color=blue>             8</font> = status after 100 points<br>    <font color=blue>            16</font> = status after 10 points<br></blockquote>Find unstable period <font color=blue><tt>-p</tt></font> orbits and theirstabilitiy (the most unstable eigenvalue). The dynamics is approximated using aGaussian kernel estimator of bandwidth <font color=blue><tt>-r | -v</tt></font>, where either <font color=blue><tt>-r</tt></font> or <fontcolor=blue><tt>-v</tt></font> must be given.The minimum of <pre>     p    ---    \   /                  \ 2     |  | x    - f(x ,...) |    /   \  n+1      n      /    ---    n=1</pre>is sought by a Levenberg-Marquardt scheme. The first <fontcolor=blue><tt>-n</tt></font> embedded points are tried as initialconditions. False minima can be cut off by limiting <fontcolor=blue><tt>-a</tt></font>, the error at the minimum. Very close trialpoints can be omitted by giving <font color=blue><tt>-w</tt></font>. Orbitswhich are less than <font color=blue><tt>-W</tt></font> apart are consideredidentical.<p>The stability is computed by iterating forward a small (set by <fontcolor=blue><tt> -s </tt></font>) initial perturbation to the orbit.<p>Orbits are written to <fontcolor=blue><em>file</em>_<tt>upo</tt>_<em>pp</em></font> where <em>pp</em> isthe desired period. If an orbit is found to have a sub-period, all results aregiven with respect to that. Orbits can be plotted in delay coordinates using<a href="upoembed.html">upoembed</a>.<p><font color=red><b>Note:</b></font>As you noticed, the UPOs are defined here ina rather loose sense, similarly in spirit to the use by <ahref="citation.html#so">So et al.</a> and other authors. Thus, the meredetection of such an orbit does not constitute evidence for low dimensionaldynamics or anything the like. <p><font color=red><b>Note:</b></font>The period  is passed to the program insamples. This is different from what you may expect, since a "period 2" orbitof the Lorenz equations may turn out to have period 137 or whatever. In fact,the program has been written for map like, or Poincar&eacute section data.It is also fair to say that it hasn't been tested extensively.<p><font color=red><b>Note:</b></font> While the existence and locations of theorbits seems to be quite reliable, the stabilities pose surprisingproblems. The chief reason is that they use information at a single point inphase space and no averaging over the whole attractor is involved. Values should be fine for comparisons, like in <ahref="test.html">surrogate data testing</a>. If absolute quantities are needed(like in <a href="http://www.nbi.dk/ChaosBook/">cycle expansions</a>), extracare has to be taken. The user might consider using an alternative approach,for example via the cycle Jacobians as obtained from a locally linear fit.<p><hr><h3>Usage example</h3>Try also just running: <font color=blue><tt>gnuplot upo.gnu</tt></font> in the <font color=blue><tt>examples</tt></font> directory.<p><pre>&gt; <font color=blue><tt>henon -l1000 | addnoise -v0.1 &gt; data</tt></font>&gt; <font color=blue><tt>upo -p6 -m2 -v0.1 -n70 data -o</tt></font>gnuplot&gt; <font color=blue><tt>plot '&lt; cat data | embed -d1' notitle w do,\           '&lt; cat data_upo_06 | upoembed -d1' index 3 title "fixed point", \           '&lt; cat data_upo_06 | upoembed -d1' index 1 title "period 2", \           '&lt; cat data_upo_06 | upoembed -d1' index 0 title "period 6", \           '&lt; cat data_upo_06 | upoembed -d1' index 2 title "period 6"</tt></font></pre><p><IMG SRC="upo.gif" alt="upo results"><p><a href="../contents.html">Table of Contents</a> * <a href="../../index.html" target="_top">TISEAN home</a></body></html>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -